Collection Processing with
Constraints, Monads, and Folds

Ryan Wisnesky

Harvard University
WIR 201 |

108 100

Outline

® |ntro to Collection Processing with Functional
Query Languages

® Four open problems

® [our solutions

Saturday, April 2, 2011

Collection Processing

® Recognized early as an important application
domain (SETL, 1960’)

® Collections are invariably big
® Collection languages are invariably declarative

® Optimization of declarative queries widely studied

Saturday, April 2, 2011

Paradigms

® Relational
e SQL
® Datalog
® Nested Relational Calculus
® Functional
® MapReduce, PIG
e SETL, NESL
® Data Parallel Haskell, DryadLINQ

4

Saturday, April 2, 2011

Functional Query Languages

® Functional Query Languages
® based in part on pure lambda calculus
® extend relational languages (usually)

® Rejected in 90’s by DB community in favor of
nested relations

® Resurfaced as part of NoSQL movement

® This talk: design a good intermediate form for
functional query languages

Saturday, April 2, 2011

Naive Approach

® Start with the simply typed lambda calculus
® Add polynomial datatypes to model data
® Add folds to model computation
® Add monads to model collections

® Add comprehensions to model queries

® We'll be using Haskell to illustrate

® This approach is re-discovered a lot...

6

Saturday, April 2, 2011

Benefits

® Monad comprehensions de-sugar into folds
® Folds can express all primitive recursion functions
® Folds can be fused

® Well-understood equational theory

Saturday, April 2, 2011

Drawbacks

Fusion fails in common situations

Monad comprehensions cannot express
aggregation

No way to express or use constraints

With non-free collections (e.g. sets) program
soundness is undecidable

Saturday, April 2, 2011

This talk

® Fusion fails in common situations
® Use monadic augment fusion (PL)
® Monad comprehensions cannot express aggregation
® Use monad algebra comprehensions (DB)
® No way to express or use constraints
® Add embedded dependencies and chase them (DB)
® With non-free collections (e.g. sets) program soundness is undecidable

® Emit verification conditions and solve them in Coq (PL)

Saturday, April 2, 2011

Basics: Polynomial Data

® Lists in“insert presentation”

data List a = Nil | Cons a (List a)

® Fold combinator:
fold :: b -> (a -> b ->b) -> List a -> b
fold nil’ cons’ Nil = nil’
fold nil’ cons’ (Cons hd tl) =
cons’ hd (fold nil’ cons’ tl)
count :: List a -> Nat

count = fold @ (\hd tl1 -> 1 + tl)

*Actually, we will use setoids, but | will omit this from the talk...

|0

Saturday, April 2, 2011

Fold-Build Fusion

® |n addition to fold, a build combinator exists:
build :: (forall b. b -> (a -> b -> b)
-> b) -> List a

build g = g Nil Cons

® [old-build fusion:

fold n c (build g) = g n G

Saturday, April 2, 2011

Queries

® Programming directly with folds is tedious.

® |nstead, use monads with zeros

instance Monad List where
return :: t -> List t
return x = Cons x Nil
bind :: List t -> (t ->» List t’) -»> List t’
bind x ¥ = concat (map f x)
zero :: List t

zero = Nil

Saturday, April 2, 2011

Monad Laws

® Monad definitions must obey the laws

bind (return x) f = ¥ Xx
bind m return = m
bind (bind m f) g =
bind m (\x -> bind (f x) g)

bind zero f = zero

bind m (\x -> zero) = zero

Saturday, April 2, 2011

Do Notation

® Monads let us use do-notation to express queries

do x <- X C
= bind X (\x -> ¢ Xx)
e (Cartesian product:
do x <- X
y <- Y
return (x, y)
* Do notation is parametric in a monad with zero.

| 4

Saturday, April 2, 2011

Conjunctive Queries

® By further restricting which comprehensions we allow, we end up with
conjunctive queries.

for(x1l in X1)...(xN in XN) where P(x1,...,xN) R(x1,...,Xn)

* Interpreted as

do x1 <- X1

XN <- XN
if P(x1,...,xN)
then R(x1,...,xN)

else zero

Saturday, April 2, 2011

Example

® |n the set monad the following query returns (a set of) tuples (d, a) where a
acted in a movie directed by d:

query :: MonadZero M =>
M (director: String, actor: String) -> M (d: String, a: String)
query movies = for (ml in movies) (m2 in movies)
where ml.title = m2.title

return (d: ml.director, a: m2.actor)

® |n SQL (set monad):

SELECT ml.director, m2.actor
FROM Movies AS ml, Movies AS m2

WHERE ml.title = m2.title

Saturday, April 2, 2011

Beyond the Naive Approach

® Hopefully you are convinced that the naive
approach

® Can model many collections and computations
® (Captures special cases like SQL

® Has powerful fusion opportunities

® But problems still remain...

Saturday, April 2, 2011

Fusion

® Fold-build fusion is great when it works:

sumSqgs xs = fold 0 (+)
(build (\n c -> fold n (c . sgr) xs))

® Becomes:

sumSgs = fold @ ((+) . sqgr)

Saturday, April 2, 2011

Fusion |l

® But this doesn’t work on append (++)

ys ++ Xs = fold ys Cons Xxs

e Because append is a list producer, to enable fusion we would like to write it in
terms of build. Without doing so, for example, we cannot apply fold-build fusion
to the following:

fold z £ (map g xs ++ ys)

* However, writing append using build is impossible, as the following naive
attempt shows:

ys ++ xs = build (\n c ->» fold ys Cons xs)

* This code is incorrect, because ys is a list, but needs to be element type.

Saturday, April 2, 2011

Fusion Il

® For lists, Gill introduced a generalization of the build
operation, called augment,

augment :: (forall b. a -> (a -> b -> b) -> b) ->
List a -> List a

augment g xs = g xs Cons

* The only difference between build and augment is
that augment takes an additional argument xs which

it uses in place of Nil:

build g = augment g Nil

20

Saturday, April 2, 2011

Fusion |V

Fold-augment fusion:
fold z k (augment g h) = g k (fold z k h)

Using augment instead of build allows append to be
fused.

Until 2005, augment was only defined for lists. But
Ghani et al showed that for parameterized monads
over polynomial datatypes, augment always exists and
is inter-definable with bind and build:

augment g k = bind (build g) k

21

Saturday, April 2, 2011

Fusion Conclusion

® Having a generalized augment combinator is a huge
win for collection processing, because it allows
queries of the form

do x <- X
y <- Y
return (f x y)

* to be fused. Ghani further argues that this kind of
fusion is complete and the best possible.

22

Saturday, April 2, 2011

Aggregation

® Monad comprehensions cannot express aggregation

® Try summing all the elements of a list L:
do x <- L

?

® Problem: the return type of a comprehension is
monadic

23

Saturday, April 2, 2011

Monad Algebras

Unbeknownst to functional programmers, do-
notation can be interpreted not just in a monad, but
in a monad algebra

A monad algebra (at t) is given by a function agg
agg :: Monad M => Mt -> t
obeying certain equations.

Summing all the elements in a list is a monad
algebra; summing all the elements in a set is not.

24

Saturday, April 2, 2011

Examples

® TJo sum a list X using a comprehension, we simply write:

do x <- X

X

® TJo sum alist X after adding | to each element, we write

do x <- X

X + 1

® TJo sum every pairwise element combination of two lists XY, we write

do x <- X
y <- Y
X + Yy

25

Saturday, April 2, 2011

Aggregation Conclusion

® Writing “aggregation comprehensions” takes some
getting used to.

® Optimizing aggregation is still a challenge even in

SQL.

® But writing aggregation as a comprehension
instead of a fold allows aggregation queries to
participate in the powerful comprehension
optimizations discussed next.

26

Saturday, April 2, 2011

Constraints

® Constraints play a key role in large-scale data
processing

® Example: replace a full scan with a lookup
® But the naive approach says nothing about them

® This section: an elegant way to add constraints and
to use them to optimize comprehensions

27

Saturday, April 2, 2011

Example

MoviesBig = for (ml1l in Movies) (m2 in Movies)
where ml.title = m2.title

return (ml.director, m2.actor)

MoviesSmall = for (m in Movies)

return (m.director, m.actor)

® This query returns a set of tuples (d, a) where a acted in a movie directed by d.

® These two queries are equivalent (in the set monad) exactly when the
functional dependency title -> director holds.

28

Saturday, April 2, 2011

Motivation

® We need to be able to express things like
functional dependencies

® We need to be able to automatically re-write
MoviesBig into MoviesSmall

® Some commercial SQL systems and information
integration systems (e.g. Clio) do this

29

Saturday, April 2, 2011

Embedded Dependencies

® Basic idea: constraints should have a very specific
syntactic form

forall (x in Movies) (y in Movies)
where x.title = y.title

exists

where x.director = y.director

30

Saturday, April 2, 2011

The Chase

® Given
® A query QI
® A query Q2
® An “acyclic” embedded dependency C

® A monad algebra obeying additional equations

® The chase is a decision procedure for determining
if QI is equivalent to Q2 when C holds

31

Saturday, April 2, 2011

Tableaux Minimization

® We can use the chase to rewrite MoviesBig into MoviesSmall, a process called
tableaux minimization. This is complete for the set monad.

MoviesBig = for (ml in Movies) (m2 in Movies)
where ml.title = m2.title
return (ml.director, m2.actor)
U= for (ml in Movies) (m2 in Movies)
where ml.title = m2.title
and ml.director = m2.director
return (ml.director, m2.actor)
MoviesSmall = for (m in Movies)

return (m.director, m.actor)

32

Saturday, April 2, 2011

Constraints: Conclusion

® By adding constraints in this manner, we are able
to reason about monad algebra comprehensions
“modulo” constraints.

® This provides another way to minimize the
number of bind operations in a query.

33

Saturday, April 2, 2011

Verification Conditions

® |n this development, we need verification in the following places:

® At monad, monad algebra, commutative idempotent monad, and
parameterized monad definitions, to verify that particular laws hold.

® At equivalence relation definitions, to verify that the provided definition
is in fact an equivalence relation.

® At each use of fold or build, to verify that the operations respect the
underlying equivalence relation.

® Moreover, we allow users to write “assert’” and “assume’” statements about
embedded dependencies.

® A simple pass over the program emits Coq theorems, which must be proved
by the user.

34

Saturday, April 2, 2011

Conclusion

® An intermediate form based on folds and monads
is a perennial idea

® Fell out of favor in the 90s, but returned as part
of NoSQL

® |n this talk we demonstrate four shortcomings in

the naive approach, each of which has a solution

discovered for other reasons in either the DB or
PL communities.

® | am developing a “universal compiler” based on
these principles for my Ph.D. thesis - stay tuned.

35

Saturday, April 2, 2011

