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Functional Query Languages with Categorical Types

Abstract

We study three category-theoretic types in the context of functional query languages (typed

λ-calculi extended with additional operations for bulk data processing). The types we study are:

• The dependent identity type. By adding identity types to the simply-typed λ-calculus we obtain a

language where embedded dependencies are first-class objects that can be manipulated by the

programmer and used for optimization. We prove that the chase re-writing procedure is sound for

this language.

• The type of propositions. By adding propositions to the simply-typed λ-calculus, we obtain

higher-order logic. We prove that every hereditarily domain-independent higher-order logic program

can be translated into the nested relational algebra, thereby allowing higher-order logic to be used as

a query language and giving a higher-order generalization of Codd’s theorem.

• The type of finitely presented categories. By adding types for finitely presented categories to the

simply-typed λ-calculus we obtain a schema mapping language for the functorial data model. We

define FQL, the first query language for this data model, investigate its metatheory, and build a SQL

compiler for FQL.
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Chapter 1

Introduction

Our thesis concerns embedded query languages [79]: λ-calculi enriched with additional operations for bulk

data processing. Such languages are typically used to query large databases and are distinguished from

more general programming languages in three ways:

• Because databases may be large, embedded query languages typically expose only those bulk

operations that can be implemented efficiently.

• Because databases may be physically stored in many different ways, embedded query languages are

typically compiled by rapidly searching the space of equivalent queries as guided by a detailed

physical cost model.

• Because the purpose of the bulk operations is to query a database, not to update it, embedded query

languages are typically purely functional and embedded in a more powerful, potentially impure

update language.

A traditional example of an embedded query language is SQL, and SQL queries are often embedded in the

more powerful PSM (persistent stored modules [37]) update language. SQL is compiled by translation into

a physical operator algebra as guided by detailed statistics about underlying data, and until the SQL-1999

standard it omitted expensive operations such as transitive closure [37]. More recently, the emergence of

so-called “no-SQL” systems [77] has led to a proliferation of non-relational embedded query languages such

as MapReduce [26] and embedding languages such as Pig [67] and Jaql [12].
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Our thesis concerns a particular class of embedded query languages: the functional query languages [43].

These languages further specialize embedded query languages in two ways:

• The syntax of these languages typically derives from some form of type theory [64].

• The semantics of these languages typically derives from some form of category theory [9].

The first functional query language was the nested relational calculus (NRC) [82]. The NRC extends the

simply-typed lambda calculus with a type of finite sets and operations for manipulating sets. The

particular set-theoretic operations of the NRC—empty set, singleton, and union—were chosen because they

correspond to the categorical notion of a monad [54]. Since then, many functional query languages have

been proposed, including the monad comprehension calculus [41], Data Parallel Haskell [19], and Links [23].

The purpose of our thesis is to investigate several types that have never before been applied to functional

query languages. For each type, we show why that type is useful for information management, prove

foundational theorems about the type, and build software illustrating how the type may be used in

practice. The three types we investigate are:

• The dependent identity type. In chapter 2, we add identity types [11] to the nested relational calculus

and obtain a functional query language where data integrity constraints are first-class objects that

can be manipulated by the programmer and used for query optimization. We prove that embedded

dependencies [2] can be represented as identity types, and that the well-known chase optimization

procedure [70] is sound for this language.

• The type of propositions. In chapter 3, we add propositions to the simply-typed lambda calculus and

obtain a higher-order logic whose categorical semantics is captured by a topos [53]. We prove that

every hereditarily domain-independent higher-order logic program can be translated into the nested

relational algebra, thereby allowing higher-order logic to be used as query language and giving a

direct, higher-order generalization of Codd’s celebrated 1972 theorem establishing the equivalence of

domain-independent first-order logic and relational algebra [22].

• The type of finitely presented categories. In chapter 4, we define FQL, the first query language for the

functorial data model [74], demonstrate that the mappings between schemas form a functional query

language, and build a compiler for FQL that emits SQL/PSM. In the functorial data model, database

schemas are finitely presented categories, and every database instance over a schema C is a functor

from C to the category of sets.
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There are undoubtedly many other categorical types that may be usefully exploited by functional query

languages, and we examine several possibilities in the conclusion. We have ordered the three chapters by

expressive power: the nested relational calculus is a fragment of higher-order logic, which is a fragment of

FQL. We conclude the introduction with a brief review of category theory.

Review of Category Theory

Category theory [9] is an axiomatically specified algebra of abstract functions suitable for formalizing

mathematics. In contrast to traditional set theory, where structures are defined by what they are, in

category theory structures are defined by how they interact. Compared to set theory, category theory is

notable for its high level of abstraction and focus on compositionality. Since its inception in the 1940s,

category theory has been applied in many disciplines, including information management, where

categorical methods inspired the design of functional query languages such as the nested relational

algebra [82]. The adjacent fields of mathematical logic and programming language theory also employ

categorical techniques [53].

A category C consists of a class of objects Ob(C) and a class of morphisms or arrows Hom(C) between

objects. Each morphism m has a source object S and a target object T , which we write as m : S → T .

Every object X has an identity morphism idX : X → X. When X is clear from the context we will write

idX as simply id. Two morphisms f : B → C and g : A→ B may be composed, written f ◦ g : A→ C or

g; f : A→ C. Composition is associative and id is its unit:

f ◦ id = f id ◦ f = f f ◦ (g ◦ h) = (f ◦ g) ◦ h

A morphism f : X → Y is an isomorphism when there exists a g : Y → X such that

f ◦ g = id g ◦ f = id

Two objects are isomorphic when there exists an an isomorphism between them.
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Example categories include:

• Set, the category of sets. The objects of Set are sets, and a morphism f : X → Y is a (total)

function from set X to set Y . Given morphisms f : Y → Z and g : X → Y , the morphism

f ◦ g : X → Z is defined as function composition: (f ◦ g)(x) := f(g(x)). The isomorphisms of Set are

bijective functions. For each object X, idX is the identity function on X.

• Rel, the category of relations. The objects of Rel are sets, and a morphism f : X → Y is a (partial)

relation from set X to set Y . Given morphisms f : Y → Z and g : X → Y , the morphism

f ◦ g : X → Z is defined as relation composition: (f ◦ g)(x, z) := ∃y ∈ Y.g(x, y) ∧ f(y, z). Like Set,

the isomorphisms of Rel are bijective functions and identities are identity functions.

• Any preordered set (P,≤) is a category, where the objects are the members of P , and there is a

morphism from X to Y exactly when X ≤ Y . Between any two objects there can be at most one

morphism, and the existence of identity morphisms and the composability of the morphisms are

guaranteed by the reflexivity and the transitivity of ≤.

• Any directed graph generates a category, called the free category on the graph: its objects are the

vertices of the graph, and the morphisms are the paths in the graph. For each vertex X, idX is the

0-length path X → X. Composition of morphisms is concatenation of paths, and there are no

non-identity isomorphisms.

A functor F : C→ D between two categories C and D is a mapping of objects of C to objects of D and

morphisms of C to morphisms of D that preserves identities and composition:

F (f : X → Y ) : F (X)→ F (Y ) F (idX) = idF (X) F (f ◦ g) = F (f) ◦ F (g)

Example functors include:

• For any category C, the identity functor 1C : C → C maps each object and morphism to itself.

• For any categories C and D and D an object of D, there exists a constant functor taking each object

C in C to D and each morphism in C to idD.

• There is a “forgetful” functor Rel→ Set taking each function f : X → Y to its underlying relation

f ⊆ X × Y .
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• The power set functor P : Set→ Set maps each set to its power set and each function f : X → Y to

the function which sends U ⊆ X to its image f(U) ⊆ Y .

• For every set A, there is a functor −×A : Set→ Set that maps each set X to the cartesian product

X ×A and each function f : X → Y to the function f × idA : X ×A→ Y ×A.

• Consider preorders (P,≤) and (Q,�) as categories. A functor F : P → Q is just an order-preserving

(monotone) function: if a ≤ b in P , then F (a) � F (b) in Q.

• Let Kn be the complete graph on n vertices that has an edge between every pair of distinct vertices.

Then an n-coloring of a graph G is a functor G→ Kn.

A natural transformation α : F ⇒ G between two functors F : C→ D and G : C→ D is a family of

morphisms αX : F (X)→ G(X) in D, one for each object X in C, such that for every f : X → Y in C,

αY ◦ F (f) = G(f) ◦ αX

This equation may conveniently expressed as a commutative diagram:

F (X)
F (f) //

αX

��

F (Y )

αY

��
G(X)

G(f)
// G(Y )

A natural transformation α is a natural isomorphism when for every object X in C, the morphism αX is

an isomorphism in D. Example natural transformations include:

• The identity natural isomorphism 1F : F ⇒ F for a functor F : C→ D is defined as

1FX : F (X)→ F (X) := idF (X).

• Consider the power set functor P : Set→ Set. There is a natural transformation sng : 1Set ⇒ P

that maps every set X to the singleton set {X} (i.e., sngX : X → P(X)), and there is a natural

transformation union : P ◦ P ⇒ P that maps a set of sets {X1, . . . , Xn} to its n-ary union

X1 ∪ . . . ∪Xn (i.e., unionX : P(P(X))→ P(X)).

• Let A be a set and consider the product functor −×A : Set→ Set. There is a natural

transformation proj : −×A⇒ 1Set that for each set X maps the cartesian product X ×A to its

projection X (i.e., projX : X ×A→ X).
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An adjunction between categories C and D consists of a functor F : D→ C called the left adjoint, a

functor G : C→ D called the right adjoint, a natural transformation ε : F ◦G⇒ 1C called the counit, and

a natural transformation η : 1D ⇒ G ◦F called the unit, such that for every object X in C and Y in D, the

following equations hold:

idF (Y ) = εF (Y ) ◦ F (ηY ) idG(X) = G(εX) ◦ ηG(X)

Consequently, the set of morphisms F (Y )→ X is bijective with the set of morphisms Y → G(X). Example

adjunctions include:

• Let (P,≤) and (Q,�) be partially ordered sets considered as categories, and let F : Q→ P and

G : P → Q be monotone functions considered as functors. If we have F (Y ) ≤ X iff Y � G(X), then

F and G are adjoint.

• Let A be a set and consider the product functor −×A : Set→ Set. The exponential functor

−A : Set→ Set, which maps each set X to the set of functions from A to X (written XA), is right

adjoint to −×A. Intuitively, this is because the set of functions X × Y → Z is bijective with the set

of functions X → ZY .

• Consider the category of groups and group homomorphisms, Grp. The functor free : Set→ Grp,

which maps each set X to the free group generated by X, and the functor forget : Grp→ Set which

maps each group to its underlying set, are adjoint. Intuitively, maps from the free group free(X) to

a group Y correspond precisely to maps from the set X to the set forget(Y ): each homomorphism

from free(X) to Y is fully determined by its action on generators.

A monad on a category C consists of a functor T : C→ C together with two natural transformations

η : 1C ⇒ T (called the unit) and µ : T ◦ T ⇒ T (called the join) such that

µX ◦ T (µX) = µX ◦ µT (X) µX ◦ T (ηX) = µX ◦ ηT (X) = T (X)

Example monads include:
• If F and G are adjoint functors, with F left adjoint to G, then G ◦ F is a monad.

• If (P,≤) is a partially ordered set considered as a category, a functor cl : P → P is a monad exactly

when x ≤ cl(y)↔ cl(x) ≤ cl(y) for all x, y in P .

• The power set functor P : Set→ Set is a monad.
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Chapter 2

Reifying Database Integrity

Constraints as Identity Types

2.1 Introduction

In this chapter we describe how embedded dependencies [2], which are a widely used class of data integrity

constraint, can be reified as identity types in dependently-typed monadic functional query languages, and

how the well-known “chase” optimization procedure, which minimizes monad comprehensions in the

presence of embedded dependencies [2], is sound in such languages. The chapter is split into two parts. In

the first part, we discuss monad comprehensions, embedded dependencies, the chase procedure, and how

the chase optimizes monad comprehensions in the presence of embedded dependencies. In the second part,

we prove that the chase is a semantics preserving re-writing procedure in the context of Coq [11].

2.2 Semantic Optimization

Languages and systems such as MapReduceMerge [84], Ferry [42], Data Parallel Haskell [19],

DyadLINQ [50], PIG [67], Fortress [4] and SciDB [25] are proliferating as Moore’s law drives the cost of

computing ever lower and the size of data ever larger. Like their predecessors SQL, NESL [14], and

Kleisli [83], these declarative, collection-oriented languages and systems lift programming to the level of
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abstract collections such as sets, bags, lists, and trees. As the database community discovered long ago, the

sheer size of the data processed by these systems demands sophisticated optimization [54]. Simply choosing

the right order to iterate over several collections can mean the difference between a query that completes in

a few seconds instead of a few days. At this scale, the particular properties of the data become

important [37].

Although these languages vary in the kinds of queries and collections they support, large fragments of these

languages can be formalized in a uniform way using monads (to model collections) and comprehensions (to

model queries) [17, 41]. Although monads have seen great success in providing structure to functional

programs [80], sophisticated reasoning about monads using a priori semantic information has traditionally

belonged to the realm of database theory. For example, in relational query processing, data integrity

constraints capture such semantic information as keys, functional dependencies, inclusions, and join

decompositions. These constraints are used as additional rewrite rules during optimization, a process

known as semantic optimization [2, 28, 70].

For example [2], consider the following contrived query over a relation (set of records) Movies with fields

title, director, and actor:

for (m1 in Movies) (m2 in Movies)

where m1.title = m2.title

return (m1.director,m2.actor)

This query returns (a set of) tuples (d, a) where a acted in a movie directed by d. A naive implementation

of this query will require a join. However, when Movies satisfies the the functional dependency

title→ director (meaning that if (director : d, title : t, actor : a) and (director : d′, title : t′, actor : a′) are

Movies records such that t = t′, then d = d′), this query is equivalent to

for (m in Movies)

return (m.director,m.actor)

which can be evaluated without a join. (Note that if Movies did not satisfy the functional dependency, the

equivalence would not necessarily hold.)
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Of course, knowing that the functional dependency holds, a programmer might simply write the optimized

query to begin with. But constraints are not always known at compile time, such as when collections are

indexed on-the-fly. Moreover, people are not always the programmers: information integration systems

such as Midas [7] and Clio [44] automatically generate large amounts of code. The significant, potentially

order-of-magnitude speed-ups enabled by semantic optimization are well-documented in the literature and

applied in commercial databases, such as DB2 [46]. One of our goals in this chapter is to introduce

semantic optimization to programming languages more generally.

Our for − where − return notation is defined in terms of an arbitrary monad, and the soundness of

semantic optimization varies from monad to monad. For example, the semantic optimization procedure

described in this chapter is not sound for lists or bags. Nevertheless, we see semantic optimization as useful

not only for large-scale collection processing, but for other computations that can be modeled, at least in

part, using monad comprehensions, such as functional-logic programming in Curry [5] and Daedalus [45],

as well as probabilistic programming in Haskell [29] and IBAL [68].

Related Work

Semantic optimization (which conditionally preserves semantics, subject to constraints) complements

non-semantic optimization (which always preserves semantics). Relational algebra has a well-developed

theory of non-semantic optimization by minimizing detailed cost models [37], and cost models for monad

comprehensions have been developed [51]. Inductive datatypes (and function types [59]) and monads as

found in functional programming have a well-developed theory of non-semantic optimization by fold-fusion

and deforestation [13, 39, 41, 49, 58, 60]. More recently, practical advances in theorem proving have

sparked renewed interest in the duality between program verification and semantic optimization [47].

2.3 Monads

Monads are defined formally using category theory in the introduction to this dissertation, but for the

purposes of this chapter we will use “monads in the functional programming style” [65]. In functional

programming, a monad consists of a type-constructor M and two operations, return : t→M t and

bind : M t→ (t→M t′)→M t′, such that the following three laws hold:

bind (return x) f = fx bind m return = m bind (bind m f) g = bind m (λx. bind (fx) g)
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A monad with zero has another operation, zero : M t, such that two additional laws hold:

bind zero f = zero bind m (λx. zero) = zero

2.3.1 Examples

Monads with zeros are often used to model collections. For example, consider lists and sets in Haskell, in

so-called “insert presentation”:

data Ins a = Nil | Cons a (Ins a)

-- list monad

instance MonadZero Ins where

return x = Cons x Nil

bind x f = append (map f x)

zero = Nil

-- set monad

instance MonadZero Ins where

return x = Cons x Nil

bind x f = union (map f x)

zero = Nil

Monads are not tied to particular presentations. For example, the list and set monad can also be defined

using so-called “union presentation”:

data Un = Empty | Singleton a | Union (Un a) (Un a)

Not all collections have zeroes—for example, binary trees with non-empty leaves do not have a zero.

Monads can also be formed from functions; here, state with exceptions forms a monad with zero:

type ST s a = (s -> Maybe (a, s))

instance MonadZero (ST Int) where

return s a = Just (s, a)
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bind c f s = case c s of

Nothing -> Nothing

Just (s’, a’) -> f a’ s’

zero = \s -> Nothing

Monads are by now an important subject in their own right. We refer the reader to [41, 80] for more details.

2.3.2 Notation

Monads are often used with so-called do-notation, which in Haskell looks like:

do x <- m1

m2

=

bind m1 (\x -> m2)

Haskell programmers typically first encounter do-notation with Haskell’s IO monad, as in the following

program which outputs “Hello World”:

main = do putStr "Hello"

putStrLn "World"

Also popular is monad comprehension notation, which works for monads with zero, such as lists and sets:

[c | x <- X, P]

=

do x <- X

if P then return c else zero

For example,

[x | x <- 1..10 , isEven x] = [2, 4, 6, 8, 10]

To emphasize the connection with database theory, we will use for − where − return notation, which

we define in the next section. Regardless of the choice of notation, monad comprehensions can be

normalized using the monad laws, as described by Grust in [41]. An interesting direction for future work

would be to use a weaker structure, such as applicative functors [57], in place of monads in our theory.
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2.4 Queries

We will be focusing on comprehensions that are syntactically conjunctive queries. For ease of exposition, in

this section, we will assume we are working in a strongly-normalizing typed λ-calculus with first-class

records, such as [38]. We will write (l1 : e1, . . . , lN : eN ) to indicate a record with labels l1, . . . lN formed

from expressions e1, . . . , eN . We will assume records contain unique labels and are equated up-to label

permutation. We also assume a decidable equality on records and sets of records. For the most part, in this

section the specifics of our ambient language will not matter. We will abbreviate (potentially 0-length)

vectors of variables x1, ..., xN as −→x . Fix a monad with zero M and let −−−−−→X : M t in some typing context. We

will write P (−→x ) to indicate a conjunction of predicates over the variables −→x . A tableau (plural: tableaux)

has the form:

for
−−−−−−→
(x in X)

where P (−→x )

The
−−−−−−→
(x in X) are called generators, and the −→X are called roots. A query is a pair of a tableau and an

expression R(−→x ):

for
−−−−−−→
(x in X)

where P (−→x )

return R(−→x )

A query is interpreted as a monad comprehension:

do x1 ← X1

. . .

xN ← XN

if P (x1, . . . , xN )

then return R(x1, . . . , xN )

else zero
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For example, the query from the introduction:

for (m1 in Movies) (m2 in Movies)

where m1.title = m2.title

return (m1.director,m2.actor)

is interpreted as:

do m1 ←Movies

m2 ←Movies

if m1.title = m2.title

then return (m1.director,m2.actor)

else zero

which de-sugars into

bind Movies (λm1.

bind Movies (λm2.

if m1.title = m2.title

then return (m1.director,m2.actor)

else zero ))

and, in the set monad, this becomes

union (map Movies (λm1.

(union (map Movies (λm2.

if m1.title = m2.title

then Cons (m1.director,m2.actor) Nil

else Nil )))))
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A query can also naturally be interpreted as a function over its roots (here, Movies). In this case, to

evaluate a query we require values for the roots (here, we require a particular relation Movies). We will

write q(I) to indicate a query q evaluated at I. The I is usually called an instance. Our example query can

thus also be regarded as the function:

λMovies. do m1 ←Movies

m2 ←Movies

if m1.title = m2.title

then return (m1.director,m2.actor)

else zero

Extensions

Many extensions to conjunctive queries have been studied in the literature. Two stand out as particularly

important:

• It is possible to allow generators to be dependent; for example:

for (g in Groups) (person in g) . . .

This allows for nested values; for example, nested relations [70].

• It is possible to interpret queries in monad algebras, rather than monads [54]. A monad algebra is an

operation of type M t→ (t→ t′)→ t′ obeying certain equations. This more general type (relative to

bind) allows for aggregation operations; for example, it is possible to write a query to count the

number of elements in a list, which is impossible in the system presented above.

We will ignore these extensions for now, but it is likely that our results will hold in these more general

settings (such as the nested relational calculus studied in the next chapter).
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2.5 Embedded Dependencies

Embedded dependencies [2] take the form of pairs of tableaux. Intuitively, one tableaux is universally

quantified, and the other existentially:

forall
−−−−−−→
(x in X)

where P (−→x )

exists
−−−−−−→
(y in Y )

where B(−→x ,−→y )

The functional dependency from our example is written (the exists clause is empty):

forall (x in Movies) (y in Movies)

where x.title = y.title,

exists

where x.director = y.director

Unlike conjunctive queries, which have a straightforward interpretation in a monad with zero, the meaning

of an embedded dependency is less clear. We will give the meaning of an embedded dependency C using a

pair of queries called the front and back of C. We write L(−→x ) to indicate a record capturing the variables
−→x ; e.g., (x1 : x1, . . . , xN : xN ). The front of an embedded dependency is:

for
−−−−−−→
(x in X)

where P (−→x )

return L(−→x )

and the back is

for
−−−−−−→
(x in X)

−−−−−−→
(y in Y )

where P (−→x ) ∧B(−→x ,−→y )

return L(−→x )
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Later, we will write front(R,C) and back(R,C) to indicate the queries front(C) and back(C) but whose

return clauses are R. We will write I |= C to indicate that C holds of instance I, or that I satisfies C:

I |= C := front(C)(I) = back(C)(I)

In the set monad, the above definition of satisfaction corresponds to our intuitive notion of satisfaction;

however, this definition of satisfaction has the advantage of being definable for every monad with zero.

Continuing with our example, our functional dependency holds of a particular instance Movies when

for (x in Movies) (y in Movies)

where x.title = y.title,

return (x : x, y : y)

=

for (x in Movies) (y in Movies)

where x.title = y.title ∧ x.director = y.director

return (x : x, y : y)

For example, in this instance:

title director actor

T D A

T D B

the constraint holds because both sides evaluate to (omitting some labels to save space):

x y

(T,D,A) (T,D,A)

(T,D,A) (T,D,B)

(T,D,B) (T,D,A)

(T,D,B) (T,D,B)
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whereas in this instance:

title director actor

T D1 A

T D2 B

the constraint does not hold because the left-hand side and right-hand side evaluate to, respectively:

x y

(T,D1, A) (T,D1, A)

(T,D1, A) (T,D2, B)

(T,D2, B) (T,D1, A)

(T,D2, B) (T,D2, B)

x y

(T,D1, A) (T,D1, A)

(T,D2, B) (T,D2, B)

2.6 The Chase

The chase is a confluent rewriting system that rewrites comprehensions using embedded dependencies [2].

We now describe the chase, and in the next section we show how to use it to optimize queries.

2.6.1 Homomorphisms

A homomorphism between queries, h : Q1 → Q2

Q1 := for
−−−−−−−→
(v1 in V1)

where P1(−→v1)

return R1(−→v1)

→h

Q2 := for
−−−−−−−→
(v2 in V2)

where P2(−→v2)

return R2(−→v2)
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is a substitution mapping the for -bound variables of Q1 (namely, −→v1) to the for -bound variables of Q2

(namely, −→v2) that preserves the structure of Q1 in the sense that

• Each (h(v1i) in V1i) appears in
−−−−−−−→
(v2 in V2) (that is, the image of each generator in Q1 is found in

the generators of Q2).

• P1(h(−→v1)) is entailed by P2(−→v2) (that is, the images of the conjuncts in Q1 are a consequence of the

conjuncts in Q2).

• R1(h(−→v1)) = R2(−→v2), under the equalities in P2 (that is, the return clauses are equivalent).

For arbitrary predicates P1 and P2 and arbitrary expressions R1 and R2, finding homomorphisms is

undecidable. However, when the queries are path-conjunctive—that is, when P1, P2 are conjunctions of

equalities between paths of the form v.l1, . . . . ln, and R1 and R2 are records built from paths—finding

homomorphisms is decidable but NP-hard. Moreover, in this case there are practical, sound heuristics [28]

based on pruning the search space of substitutions to remove candidates that are “obviously wrong” based

on a partial variable assignment. In this chapter, all our examples are path conjunctive.

For example, consider our Movies query (call it Q1):

Q1 := for (m1 in Movies) (m2 in Movies)

where m1.title = m2.title

return (m1.director,m2.actor)

and also the normalized query (call it Q2) which we will later optimize Q1 into:

Q2 := for (m in Movies)

return (m.director,m.actor)

There is a homomorphism h : Q1 → Q2; namely, the substitution m1 7→ m,m2 7→ m. To check this, we

first apply h to Q1:

h(Q1) := for (m in Movies) (m in Movies)

where m.title = m.title

return (m.director,m.actor)
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In h(Q1) each generator (m in Movies) appears in Q2. Moreover, the where clause of h(Q1) is a

tautology and hence is entailed by the (empty) where clause of Q2. Finally, the two return clauses are

equal. As such, the substitution m1 7→ m,m2 7→ m is a homomorphism.

In the set monad, homomorphisms are useful because the existence of a homomorphism A→ B implies

that for every I, B(I) ⊆ A(I). Indeed, it is easy to see in this example that Q2(I) ⊆ Q1(I) for any I. Later

we will make use of a similar property for arbitrary monads to show that the chase is sound.

At this point it is instructive to check that there is no homomorphism Q2 → Q1. There are only two

candidate substitutions: m 7→ m1 and m 7→ m2. Neither of these works because neither of the images of

Q2’s return clause (neither return (m1.director,m1.actor) nor return (m2.director,m2.actor)) is

equivalent to Q1’s return clause (return (m1.director,m2.actor)), even under the equality in Q1

(m1.title = m2.title). Because there are not homomorphisms in both directions, these two queries are not

equivalent. Indeed, consider the instance:

title director actor

T D1 A

T D2 B

Q1 and Q2 evaluate to, respectively

director actor

D1 A

D1 B

D2 A

D2 B

director actor

D1 A

D2 B

Of course, if we had chosen an instance I that satisfied the functional dependency Title → Director, then

Q1(I) and Q2(I) would have evaluated to the same result.
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2.6.2 The Chase Algorithm

Now we can define the chase. Let

C := forall
−−−−−−→
(x in X)

where P (−→x )

exists
−−−−−−→
(y in Y )

where B(−→x ,−→y )

Q := for
−−−−−−→
(v in V )

where O(−→v )

return R(−→v )

and suppose there exists a homomorphism h : front(R,C)→ Q. Then a chase step is to rewrite Q into

chase(Q,C) by adding the image of the existential part of C:

chase(Q,C) := for
−−−−−−→
(v in V )

−−−−−−→
(y in Y )

where O(−→v ) ∧B(
−−→
h(x),−→y )

return R(−→v )

The chase itself is to repeatedly rewrite Q by looking for homomorphisms from C:

Q chase(Q,C) chase(chase(Q,C), C) . . .

Termination of the chase is undecidable, but if it terminates it will converge to a unique fixed point [28]

provided that we do not take a chase step when there is a homomorphism extending h from chase(Q,C) to

Q. Continuing with our Movies example, we can see that there is a homomorphism x 7→ m1, y 7→ m2 from

the front of our constraint:

forall (x in Movies) (y in Movies)

where x.title = y.title,

exists

where x.director = y.director
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to our original query:

for (m1 in Movies) (m2 in Movies)

where m1.title = m2.title

return (m1.director,m2.actor)

Hence, the chase applies, and chase(Q,C) is:

for (m1 in Movies) (m2 in Movies)

where m1.title = m2.title ∧m1.director = m2.director

return (m1.director,m2.actor)

At this point, we stop chasing, because we have that chase(chase(Q,C), C) = chase(Q,C) and hence

there is a homomorphism chase(chase(Q,C), C)→ chase(Q,C). In general, it is not enough to check for

the syntactic equality of chase(Q,C) and Q to stop the chase, as queries can be equivalent without being

syntactically equal. Hence, we must use homomorphisms to detect termination.

2.6.3 Soundness

The chase is not sound for arbitrary monads, and in particular it is not sound for the list and bag

monads [70]. The chase adds generators to a query, and adding generators to list and bag comprehensions

can add additional tuples to the result; in the set monad, these extra tuples disappear by idempotency.

For example, in the list monad, our functional dependency title→ director still holds on this instance:

title director actor

T D A

T D B

but our original and optimized queries are not equivalent; they result in, respectively,
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D A

D B

D A

D B

D A

D B

In a tech report [81] we give sufficient conditions on a monad for the chase to be sound. As later we will

prove that the chase is sound when specialized to Coq’s ensemble monad, we omit the proof here. However,

for reference we state here what it means for the chase to be sound and give a broad outline of the steps

required to prove it. Let

Q := for
−−−−−−→
(x in P )

where C(−→x )

return E(−→x )

d := forall
−−−−−→
(r in R)

where B1(−→r )

exists
−−−−−→
(s in S)

where B2(−→r ,−→s )

Let h : front(d)→ Q. The chase is sound when forall I s.t. I |= d, Q(I) = Q′(I), where

Q′ := for
−−−−−−→
(x in P )

−−−−−→
(s in S)

where C(−→x ) ∧B2(h(−→r ),−→s )

return E(−→x )

The proof proceeds along five steps, where steps 4 and 5 are symmetrical to 1 and 2.
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Q := for
−−−−−−→
(x in P )

where C(−→x )

return E(−→x )

C(−→x ) ` B1(h(−→r )) = (1)

for
−−−−−−→
(x in P )

where C(−→x ) ∧B1(h(−→r ))

return E(−→x )

h(−−−−→r in R) ⊆ −−−−→x in P = (2)

for
−−−−−−→
(x in P )

−−−−−−→
(v in R)

where C(−→x ) ∧B1(−→v ) ∧ −→v = h(−→r )

return E(−→x )

d holds = (3)

for
−−−−−−→
(x in P )

−−−−−−→
(v in R)

−−−−−→
(s in S)

where C(−→x ) ∧B1(−→v ) ∧B2(−→v ,−→s ) ∧ −→v = h(−→r )

return E(−→x )

h(−−−−→r in R) ⊆ −−−−→x in P = (4)

for
−−−−−−→
(x in P )

−−−−−→
(s in S)

where C(−→x ) ∧B1(h(−→r )) ∧B2(h(−→r ),−→s )

return E(−→x )

C(−→x ) ` B1(h(−→r )) = (5)

Q′ := for
−−−−−−→
(x in P )

−−−−−→
(s in S)

where C(−→x ) ∧B2(h(−→r ),−→s )

return E(−→x )
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2.7 Tableaux Minimization

We now demonstrate how to minimize queries in the presence of constraints, following Popa et al [28]. The

soundness of this procedure follows from the soundness of the chase. Suppose we are given a query Q and

constraints C. We first chase Q with C to obtain U , a so-called universal plan. We then search for

subqueries of U (obtained by removing generators from U), chasing each in turn with C to check for

equivalence with U .

2.7.1 Example - Movies

Start with:

Q := for (m1 in Movies) (m2 in Movies)

where m1.title = m2.title

return (m1.director,m2.actor)

C := for (x in Movies) (y in Movies)

where x.title = y.title

x.director = y.director

The chased query—the universal plan—is:

U := for (m1 in Movies) (m2 in Movies)

where m1.title = m2.title ∧m1.director = m2.director

return (m1.director,m2.actor)

We may now proceed with tableau minimization by searching for subqueries of U . Removing the generator

(m1 in Movies) and replacing m1 with m2 in the body of the query gives a normalized query:

Q′ := for (m2 in Movies)

return (m2.director,m2.actor)
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Now we look for a homomorphism Q′ → U . The identity substitution works; the important part here to

notice is the return clause, where (m2.director, m2.actor) is equal to (m1.director, m2.actor) precisely

because of the equality m1.director = m2.director, which appears in U but not in Q. Note that there is also

a homomorphism U → Q′ (namely, m2 7→ m,m1 7→ m); hence U = Q′ = Q.

2.7.2 Example - Minimization without Constraints

Tableaux minimization can also be done without constraints. Indeed, this degenerate case was first

proposed in 1977 [20]. Consider the (contrived) query:

for (x in X) (y in X)

where P (x)

return E(x)

This minimizes to the equivalent query:

for (z in X)

where P (z)

return E(z)

In the top-to-bottom direction, the homomorphism is x 7→ z, y 7→ z, and in the bottom-to-top direction the

homomorphism is z 7→ x.

2.7.3 Example - Indexing

We conclude this section with an optimization scenario involving a tuple-generating constraint (that is, a

constraint with a non-empty exists clause). As we remarked in the introduction, a reasonably competent

programmer might be able to optimize our Movies query directly, without applying the chase at all. But

sometimes constraints are not available to the programmer, such as when indices are generated on the fly.
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Consider the following query, which in the set monad returns the names of all People between 16 and 18

years old:

Q := for (p in People)

where p.age > 16 ∧ p.age < 18

return p.name

Depending on the underlying access patterns, or the whims of a database administrator, a modern

relational database management system might transparently index People by creating another relation

Children, such that the following constraint holds:

C := forall (p in People)

where p.age < 21

exists (c in Children)

where p.name = c.name ∧ p.age = c.age

In order to effectively use this new relation, queries written against People must be rewritten, at runtime,

to use Children. Tableaux minimization provides an automated mechanism to do so. First, we look for a

homomorphism front(C)→ Q, and discover that the identity substitution works, because p.age < 21 is

entailed by p.age > 16 ∧ p.age < 18. Thus the chase applies and we obtain a universal plan:

U := for (p in People) (c in Children)

where p.age > 16 ∧ p.age < 18 ∧

p.name = c.name ∧ p.age = c.age

return p.name
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Now, we minimize the universal plan by removing the (p in People) generator (note that to do so we must

replace each occurrence of p with some other well-typed variable, in this case c):

Q′ := for (c in Children)

where c.age > 16 ∧ c.age < 18

return c.name

We check that Q′ = U by looking for homomorphisms in both directions. The identity substitution is a

homomorphism Q′ → U , owing to the fact that p.name = c.name. But at this point there is no

homomorphism U → Q′, because there is no substitution h that makes (h(p) in People) equal to

(c in Children). In fact, C alone is not enough to prove that Q′ = Q—there may be extra tuples in

Children that do not appear in People. But if our index was built correctly we know that an additional

constraint holds:

C ′ := forall (c in Children)

exists (p in Person)

where p.name = c.name ∧ p.age = c.age

As such, we may chase Q′ with C ′ (using the identity substitution) to obtain the equivalent:

Q′′ := for (c in Children) (p in Person)

where c.age > 16 ∧ c.age < 18 ∧

p.name = c.name ∧ p.age = c.age

return c.name

Now we can see that the identity substitution is a homomorphism Q′′ → U (again owing to the fact that

p.name = c.name). We have thus concluded that Q′′ = Q′ = Q = U .
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2.8 Embedded Dependencies in Coq

Because an embedded dependency d can be represented as the equivalence of two conjunctive queries,

front(d) and back(d), it is simple to reify embedded dependencies in dependent type theories like Coq [11].

All the Coq code in this section is available online at wisnesky.net/chase.v. Consider the set monad, defined

for expediency in Coq as an “ensemble” (similar to how sets are encoded in higher-order logic, as we will

see in the next chapter):

Definition set t := t -> Prop.

Definition zero {t} : set t := fun x:t => False.

Definition plus {t} (a b: set t) : set t := fun x:t => a x \/ b x.

Definition ret {t} (a: t) : set t := fun x:t => a = x.

Definition map {s t} (f : s -> t) (X : set s) : set t

:= fun y : t => exists x : s, X x /\ (f x = y).

Definition concat {t} (I : set (set t)) : set t :=

fun j : t => exists J, I J /\ J j.

Definition bind {s t} (a: set s) (b: s -> set t) : set t :=

concat (map b a).

In our movies example, the functional dependency

forall (x in Movies) (y in Movies)

where x.title = y.title,

exists

where x.director = y.director
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becomes the equivalence

for (x in Movies) (y in Movies)

where x.title = y.title,

return (x : x, y : y)

=

for (x in Movies) (y in Movies)

where x.title = y.title ∧ x.director = y.director

return (x : x, y : y)

which is rendered in Coq as

Record Movie := movie { title: string; director: string; actor:string }.

Definition fd (Movies: set Movie) : Prop :=

bind Movies (fun x => bind Movies (fun y =>

if string_dec (title x) (title y) then ret (x, y) else zero))

=

bind Movies (fun x => bind Movies (fun y =>

if and (string_dec (title x) (title y)) (string_dec (director x) (director y))

then ret (x, y) else zero)).

The key point is that because the functional dependency fd is a Coq proposition, programmers can

manipulate proofs of it programatically. For example, we could write a program that only operates over

instances for which the constraints holds:

Definition some_query (m: set Movie) (c: fd m) := ...

To use such a definition, the programmer can construct a proof that the constraint holds, for example with

a singleton set

Definition ok_inst := fun m => ret (movie "T" "D" "A")

Theorem ok_inst_is_ok : fd ok_inst.
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...

Definition some_query_on_ok_inst := some_query ok_inst ok_inst_is_ok

2.9 Soundness of the Chase in Coq

Reifying embedded dependencies as identity types not only allows programmers the ability to manipulate

them as first class objects, but allows the chase procedure to apply as well. Unfortunately, because the

chase is a nominal algorithm, making use of the concrete names of variables in queries and constraints, this

process is difficult to capture in its full generality: a homomorphism between queries is a substitution

mapping the bound variables of one query to another query, but Coq programmers cannot easily reify the

names of bound variables as, say, strings.

Fortunately, it is possible to prove every particular chase sequence by following the proof described in [81].

Consider our general statement of chase soundness: let

Q := for
−−−−−−→
(x in P )

where C(−→x )

return E(−→x )

d := forall
−−−−−→
(r in R)

where B1(−→r )

exists
−−−−−→
(s in S)

where B2(−→r ,−→s )

Let h : front(d)→ Q. The chase is sound when forall I s.t, I |= d, Q(I) = Q′(I), where

Q′ := for
−−−−−−→
(x in P )

−−−−−→
(s in S)

where C(−→x ) ∧B2(h(−→r ),−→s )

return E(−→x )

To demonstrate what the proof of this looks like in Coq we will make two simplifications. First, we use

vectors of length 1. Second, we make use of the homomorphism front(d)→ Q by directly setting r = x

and R = P . It is precisely this identification of variables that is impossible to do in general, but is possible

for each particular case. Then the result is provable in Coq as follows:
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Theorem chase_sound {s t u}

(P: set s)

(C: s -> bool)

(E: s -> t)

(B1:s -> bool)

(S: set u)

(B2:s -> u -> bool)

(d_holds : bind P (fun x => if B1 x then ret x else zero)

= bind P (fun x => bind S (fun s =>

if (B1 x) && (B2 x s) then ret x else zero)))

(h : forall a, negb (C a) || (B1 a) = true) :

bind P (fun x => if C x then ret (E x) else zero)

= bind P (fun x => bind S (fun s => if (C x) && (B2 x s) then ret (E x) else zero)).

Coq’s tactic language Ltac might be able to automate the construction of chase proofs, but like Coq itself,

Ltac cannot easily reify bound variable names. However, a Coq plug-in (written in ML) would be able to

automatically construct chase proofs because it would have access to concrete variable names.

Implementing such a plug-in is a promising direction for future work. Alternatively, a deep embedding of

the monad language and dependencies would allow Ltac the required access to concrete variable names.
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Chapter 3

Higher-order Logic as a Query

Language

3.1 Introduction

In this chapter we describe how to use higher-order logic (HOL) [53] as a database query language. Our

methodology is a higher-order generalization of Codd’s pioneering work [22] on using first-order logic

(FOL) as a database query language. Codd proved that FOL and the relational algebra (RA) have equal

expressive power, thereby allowing many tools from mathematical logic to be brought to bear on problems

in information management. Although SQL, which is based on RA rather than FOL, is the dominant

user-facing programming language for relational database management systems, in other kinds of relational

systems, such as information integration systems, FOL is the dominant language [31]. Indeed, most

theoretical work on the relational model is done using FOL [1]. Similarly, most theoretical work on the

nested relational model, which allows relations to be nested inside relations, is done using the nested

relational calculus (NRC) [82], and the NRC is a fragment of HOL.

Our original motivation for studying HOL as a query language was to understand its unexpected

appearance in two places. The first was the observation by Popa and Tannen [70] that the NRC, although

inspired by the categorical notion of a monad, seems to have some of the structure of HOL. The second

was the observation by Spivak [74] that the functorial data model, which we describe in the next chapter,
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Higher-order quantification First-order quantification
Bounded quantification Nested Relational Calculus Relational Calculus
Unbounded quantification Higher-order Logic Set Theory

Figure 3.1: Summary of query calculi

also seems to have some of the structure of HOL. In fact, in both places what appeared was not HOL, but

rather HOL’s categorical semantics: the categorical notion of a topos [53]. Only after understanding the

role that topoi played in both these works were we able to deduce the common theme: HOL was being

used to query databases.

Since then we have discovered that HOL is an extremely expressive query calculus for the nested relational

model. Unlike the NRC, which only allows bounded quantification over sets, HOL allows unbounded

quantification over sets; unlike first-order set theory (FOST) [1], which treats sets as first-order objects,

HOL treats sets as genuinely higher-order objects. Because most work on practical query optimization is

done in an algebraic setting [41], both the NRC and FOST use translation into the nested relational

algebra (NRA) as a primary implementation technique [1] [82]. Hence, we looked for a translation of HOL

into the NRA, and that is the content of this chapter: a translation of HOL into the NRA and a

corresponding semantics preservation proof.

3.1.1 Contributions

The technical contributions of this chapter are

• A categorical semantics for the NRC in boolean topoi [53].

• A translation from HOL to the NRC. By a result of Wong [82], the NRC can be translated to the

NRA. Hence, we have a translation from HOL to the NRA.

• A categorical description of domain independence that generalizes existing notions [78].

Domain-independent queries are exactly those that do not depend on the underlying domain of the

input database, be it 32-bit integers, ASCII strings, binary blobs, etc.

• A proof that our HOL to NRC translation is sound under HOL’s set-theoretic semantics for

hereditarily domain-independent terms. A HOL term is hereditarily domain-independent when it and

all of its sub-terms are domain-independent.

• A mechanization of the semantics preservation proof in the Coq proof assistant [11].
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We conjecture that our semantics preservation proof can be extended from hereditarily

domain-independent terms to all domain-independent terms. A tool that translates arbitrary HOL to NRC

is available at wisnesky.net/hol2nrc.jar. Our Coq proofs are available at wisnesky.net/hol2nrc.v.

3.1.2 Outline

This chapter is structured as follows:

• In section 2 we define the syntax and categorical semantics of HOL.

• In section 3 we define the syntax and categorical semantics of NRC.

• In section 4 we define a translation from HOL types to NRC types.

• In section 5 we define a categorical notion of change of domain.

• In section 6 we define NRC’s active domain query.

• In section 7 we define a translation from HOL terms to NRC terms.

• In section 8 we define a notion of domain independence for HOL terms.

• In section 9 we prove our HOL to NRC translation is semantics preserving.

• In section 10 we provide a reverse translation from NRC to HOL.

• In section 11 we review related work.

• In section 12 we discuss future work.

• In section 13 we discuss our Coq mechanization of our semantics preservation proof.

Many of our proofs are found in this chapter’s appendix. We conclude the introduction with a review of

Codd’s theorem [22].

3.1.3 Codd’s Theorem

In this section we review Codd’s theorem [22]. A relational schema is a set of relation names and their

arities. An instance I over a schema R is a collection of relations IR, one for each relation name R ∈ R. A

FOL formula P over schema R has the form:

P ::= > | ⊥ | P ∧ P | P ∨ P | ¬P | xn = xm | R(x1, . . . , xn) | ∀x.P (x) | ∃x.P (x)
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A relational calculus (RC) expression ϕ is a FOL formula with free variables:

ϕ ::= { x1, . . . , xn | P (x1, . . . , xn) }

A model of an RC expression is a pair (D, I), where D is a “domain” of constants over which variables are

quantified and I is an instance such that for every R, IR is a relation over D of appropriate arity. We write

qD(I) to indicate the result of evaluating RC expression q on instance I using domain D.

A relational algebra expression E over schema R has the form, where R ∈ R and n represents a numeric

column position:

E ::= R | πn1,...,nk E | σn1=n′1,...,nj=n′j E | E × E | E ∪ E | E − E

Some RC expressions are clearly equivalent to RA expressions. For example, the RC expression {x | R(x)}

is clearly equivalent to the RA expression R. But not every RC expression is equivalent to an RA

expression. Let q be

{ x1, . . . , xn | ¬R(x1, . . . , xn) }

Intuitively, q produces different answers over different domains. If the variables x1, . . . , xn range over a

domain D, then qD(I) evaluates to Dn − IR for every I. Hence, this RC expression is not

domain-independent. In contrast,

{ x1, . . . , xn | R′(x1, . . . , xn) ∧ ¬R(x1, . . . , xn) }

is domain-independent. More formally, the active domain of an instance I, written adom(I), is the set of

constants occurring in I. An RC expression q is domain-independent when for every I and D such that

adom(I) ⊆ D, we have that qD(I) = qadom(I)(I). Intuitively, for domain-independent queries q the result of

evaluating qD(I) does not depend on the domain D, but only depends on the instance I.

Codd’s theorem [22] is that we can translate from RC to RA by treating unbounded quantification, which

has no RA counterpart, as quantification over the active domain, which does have an RA counterpart. For

example, consider the RC expression {x | ∀yR(x, y)}. To translate it to RA we first convert it to the

logically equivalent {x | ¬∃y¬R(x, y)}. Then we translate from RC to RA recursively:
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adom := π1(R) ∪ π2(R)

¬R(x, y) := adom× adom−R

∃y¬R(x, y) := π1 (adom× adom−R)

¬∃y¬R(x, y) := adom− π1 (adom× adom−R)

Although there is an equivalent RA expression for every domain-independent RC expression, it is

undecidable whether a given RC expression is domain-independent. However, there are various syntactic

subsets of RC for which membership is decidable and for which all expressions are domain-independent [2].

Typically, RC expressions are simply assumed to be domain-independent, and “RC” is taken to mean

“domain-independent FOL”. Thus we can think of RC as FOL where every variable is implicitly quantified

over the active domain.

3.2 Higher-order Logic

HOL is a family of related formalisms [53], and we use the following formulation. The set of HOL types t is

inductively defined as:

t ::= D domain type

| 0 empty type

| 1 unit type

| t× t pair type

| t+ t choice type

| t→ 2 set (characteristic function) type

Intuitively, each type defines a set of values, called the inhabitants of that type: the inhabitants of D are

constants, 0 has no inhabitants, 1 has a single inhabitant, the inhabitants of t× t′ are pairs of inhabitants

of t and t′, the inhabitants of t+ t′ are inhabitants of either t or t′, and the inhabitants of t→ 2 are sets of

inhabitants of t represented as characteristic functions. We define 2 := 1 + 1 and treat it as a boolean type

because it has two inhabitants.
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The set of HOL terms e is inductively defined as those of a simply typed lambda calculus (e.g., [64]):

e ::= x variable

| λx : t.e set comprehension

| ee membership

| () empty record

| (e, e) pair

| e.1 first projection of a pair

| e.2 second projection of a pair

| ff t impossibility

| inlt e first injection into a choice

| inrt e second injection into a choice

| case e of λx : t.e or λx : t.e conditional

| e = e equality test

As usual, we assume all variables in a term are unique, and equate terms that differ only by bound

variables. Intuitively, λx : t.e is a characteristic function denoting the set of terms of type t that satisfy e

(note that x will usually be bound in e), and ee′ means e′ ∈ e. In HOL, λ-abstraction forms terms of type

t→ 2, rather than general function types t→ t′. The empty record () is the sole inhabitant of the unit type

1. (e, e′) means to form a pair of e and e′, and e.1 and e.2 mean to project the first and second components

of e, respectively. ff t e effectively means “e is impossible”; i.e., fft eliminates terms of type 0. inlt e and

inrt e tag e with the choice of “left” or ”right”, and the case e of . . . construct allows conditional

execution based on whether the tag of e is “left” or “right”. Finally, e = e′ tests e and e′ for equality.

To make the above intuition precise, we will now define a typing relation between terms and types. A

context Γ is a list of bindings of variables to types:

Γ ::= − | Γ, x : t

The three-place typing relation Γ ` e : t is inductively defined using inference rules [64] as:
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VAR1

Γ, x : t ` x : t

VAR2

Γ ` x : t

Γ, y :s ` x : t

ABS

Γ, x : t ` e : 2

Γ ` λx : t.e : t→ 2

APP

Γ ` f : t→ 2 Γ ` e : t

Γ ` fe : 2

UNIT

Γ ` () : 1

VOID

Γ ` e : 0

Γ ` ff t e : t

PROJ1

Γ ` e : s× t

Γ ` e.1 : s

PROJ2

Γ ` e : s× t

Γ ` e.2 : t

PAIR

Γ ` e : s Γ ` f : t

Γ ` (e, f) : s× t

EQ

Γ ` e : t f : t

Γ ` e = f : 2

INL

Γ ` e : s

Γ ` inlt e : s+ t

INR

Γ ` e : s

Γ ` inrt e : t+ s

CASE

Γ ` e : s+ t Γ, x :s ` f : u Γ, y : t ` g : u

Γ ` case e of λx :s.f or λy : t.g : u

The other operations commonly associated with HOL, such as propositional logic and universal and

existential quantifiers, can be defined in terms of the above operations as follows:

> := () = () ⊥ := ∀x :2.x p ∧ q := (p, q) = (>,>) p⇒ q := p ∧ q = p

∀x : t.ϕ := λx : t.ϕ = λx : t.> ∃x : t.ϕ := ∀y :2.(∀x : t.ϕ⇒ y)⇒ y

p ∨ q := ∀x :2.((p⇒ x) ∧ (q ⇒ x))⇒ x ¬p := p⇒ ⊥

3.2.1 Entailment

The entailment relation ϕ 
 ψ between HOL propositions (terms of type 2) is defined below in the usual

way [53]. To allow for empty types such as 0, we give a family of entailment relations ϕ 
Γ ψ, each indexed

by a typing context for ϕ,ψ. A sentence σ is provable if > 
 σ, also written 
 σ. A semantics for HOL is

sound when it equates the meanings of HOL terms that are provably equal according to these rules. In this

chapter we will not work directly with HOL’s entailment relation, but the existence of the entailment

relation is why HOL may be properly called a logic.
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1. Classic:

(a) > 
 ∀p.p ∨ ¬p

2. Order

(a) ϕ 
Γ ϕ

(b) ϕ(x) 
Γ;x ψ(x) implies ϕ(e) 
Γ ψ(e)

(c) ϕ 
Γ ψ and ψ 
Γ ϑ implies ϕ 
Γ ϑ

3. Equality

(a) > 
Γ e = e

(b) ϑ 
Γ ϕ⇒ ψ and ϑ 
Γ ψ ⇒ ϕ implies ϑ 
Γ ϕ = ψ

(c) e = e′ 
Γ;x ϕ(e)⇒ ϕ(e′)

(d) ∀x, fx = f ′x 
Γ f = f ′

4. Products

(a) > 
Γ (e1, e2).1 = e1 (c) > 
Γ (e.1, e.2) = e

(b) > 
Γ (e1, e2).2 = e2 (d) > 
Γ ∀x : 1.x = ()

5. Co-products

(a) > 
Γ;x case inj1 x of λx.e1 or λx.e2 = e1

(b) > 
Γ;x case inj2 x of λx.e1 or λx.e2 = e2

(c) > 
Γ case f of λx.inj1 x or λx.inj2 x = f

(d) > 
Γ ∀f, g :0→ A.f = g

6. Functions

(a) > 
Γ;x (λx.e)x = e (b) > 
Γ λx.fx = f (x not free in f)

7. Elementary logic

(a) ⊥ 
Γ ϕ (e) ϕ 
Γ ¬ψ iff ϕ ∧ ψ 
Γ ⊥

(b) ϕ 
Γ > (f) ϑ 
Γ ϕ ∧ ψ iff ϑ 
Γ ϕ and ϑ 
Γ ψ

(c) ∃x.ϑ 
Γ ϕ iff ϑ 
Γ;x ϕ (g) ϑ ∧ ϕ 
Γ ψ iff ϑ 
Γ ϕ⇒ ψ

(d) ϑ 
Γ ∀x.ϕ iff ϑ 
Γ;x ϕ (h) ϑ ∨ ϕ 
Γ ψ iff ϑ 
Γ ψ and ϕ 
Γ ψ
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It is a seminal result that provable equality in the above system corresponds exactly to semantic equality in

the topos semantics defined in the next section. In other words, if two terms denote the same morphism in

every topos, the terms are provably equal. In this way, higher-order logic is the internal logic of topoi.

Completeness no longer holds when we restrict our semantics to the category of sets, which is to say, there

are many terms that denote the same morphism in the category of sets but that are not provably equal

according to the above rules. This failure is a consequence of Godel’s incompleteness theorems [53]. Other

semantics are complete for the above rules, including so-called Henkin semantics [53].

Remark. Readers well-versed in type-theory may wonder why there are no commuting conversions [56] in

the above entailment relation. The reason is that commuting conversions are additional equations (often)

necessary to decide equivalence of terms via re-writing. Since in this chapter we are not interested in

deciding equality of HOL terms, we need not include commuting conversions.

3.2.2 Topoi

The categorical semantics of HOL is given by the notion of a topos [53], in the sense that for any topos T ,

every typing derivation in HOL denotes a morphism in T . A topos is a category with finite products,

co-products, exponentials, and a sub-object classifier. In this chapter we will be working with classical

HOL, so we will only be concerned with topoi that are boolean. We will now define what it means for T to

be a boolean topos, first by defining notation for naming particular morphisms in T , and then by giving

equations between these named morphisms. To typographically distinguish a morphism f : A→ B from a

HOL term of type A→ 2, we will often write A : f : B.

1. (Products) We will write terminal morphisms in T as A : ?A : 1. A morphism from 1 is called a

“point”. We will write the projection morphisms in T as A×B : πA,B1 : A and A×B : πA,B2 : B and

the pairing operation as A : 〈f, g〉 : B × C for morphisms A : f : B and A : g : C in T . We abbreviate

A×X : f × g : B × Y := 〈π1; f, π2; g〉 for A : f : B and X : g : Y in T .

2. (Co-products) We will write the initial morphism in T as 0 : ffA : A. We will write the injection

morphisms in T as A : injA,B1 : A+B and B : injA,B2 : A+B. We will write the co-pairing operation

as A+B : 〈f ⊕ g〉 : C for morphisms A : f : C and B : g : C in T . We abbreviate

A+X : f + g : B + Y := 〈f ; inj1 ⊕ g; inj2〉 for A : f : B and X : g : Y in T . We will write the

distributive morphisms in T as C × (A+B) : distA,B,C : (C +A)× (C +B) and

: (C +A)× (C +B) : undistA,B,C : C × (A+B).
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3. (Exponentials) If A and B are objects then we write AB for the exponential object. We have

morphisms BA ×A : evA,B : B and A : Λf : CB for A×B : f : C in T .

4. (Sub-object classifier) We will write the sub-object classifier of T as Ω, and will write 1 : > : Ω for the

“true” morphism such that for every monomorphism j : U ↪→ X, there exists a classifying morphism

X : χj : Ω such that j;χj = ?;>. A morphism j is a monomorphism when j; f = j; g implies f = g.

We will write A×A : δA : Ω for the morphism δ in T that classifies the diagonal morphism ∆A :=

A : 〈id, id〉 : A×A. A sub-object of an object X is a monomorphism U ↪→ X.

5. (Boolean) In a boolean topos, for a given object X, the lattice of monomorphisms A ↪→ X is boolean.

This implies that Ω � 1 + 1.

6. (Well-pointed) Elementary topoi are well-pointed, meaning that they are “extensional”: for every

1 : h : A, we have that h; f = h; g implies f = g.

In summary, we have the following language for describing morphisms in a topos T :

A : id : A

A : f : B B : g : C

A : f ; g : B A : ? : 1 0 : ff : A A×B : π1 : A A×B : π2 : B

A : f : B A : g : C

A : 〈f, g〉 : B × C A : inj1 : A+B B : inj2 : A+B

B : f : A C : g : A

B + C : 〈f ⊕ g〉 : A

(A→ B)×A : ev : B

A×B : f : C

A : Λf : B → C

j : A ↪→ B

B : χj : 2 A×A : δ : 2

C × (A+B) : dist : (C +A)× (C +B)
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and a topos T is such that the following equations hold:

ID-1

id; f = f

ID-2

f ; id = f

ASSOC

f ; (g;h) = (f ; g);h

ETA

Λev = id

BETA

Λh× id ; ev = h

PAIR-BETA-1

〈f, g〉;π1 = f

PAIR-BETA-2

〈f, g〉;π2 = g

PAIR-ETA

〈f ;π1, f ;π2〉 = f

UNIT-ETA

f = ? (f : A→ 1)

VOID-ETA

f = ff (f : 0→ A)

SUM-BETA1

inj1; 〈f ⊕ g〉 = f

SUM-BETA2

inj2; 〈f ⊕ g〉 = g

SUM-ETA

〈inj1; f ⊕ inj2; f〉 = f

The above list of equations is not complete. For example, in a topos, 1 is not initial (i.e., the topos is not

degenerate), but this fact is not implied by the above axioms. However, our proofs will make use of mostly

the above equations.

3.2.3 Semantics of HOL in a Topos

Let T be a topos and D an object of T . To each type t we inductively define a meaning ~t�TD ∈ Obj(T ) as:

~D� := D ~1� := 1, the terminal object in T ~0� := 0, the initial object in T

~s× t� := ~s�× ~t�, the product in T ~s+ t� := ~s�+ ~t�, the co-product in T

~t→ 2� := ~2�~t�, the exponential in T

To each typing derivation Γ ` e : t we inductively define a meaning as a morphism in T :

~Γ ` e : t� : ~Γ�→ ~t�

where by ~Γ� we mean the product

~−� := 1 ~Γ;x : t� := ~Γ�× ~t�

The exact semantics is [53]:
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VAR1-SEM

~Γ, x : t ` x : t� := π2

VAR2-SEM

~Γ, y :s ` x : t� := π1; ~Γ ` x : t�

UNIT-SEM

~Γ ` ()� := ?~Γ�

PAIR-SEM

~Γ ` (e, f) : s× t� := 〈~Γ ` e : s�, ~Γ ` f : t�〉

PROJ1-SEM

~Γ ` e.1 : t� := ~Γ ` e : s× t�;π1

PROJ2-SEM

~Γ ` e.2 : t� := ~Γ ` e : s× t�;π2

VOID-SEM

~Γ ` ff e : t� := ~Γ ` e : 0�; ff

INL-SEM

~Γ ` inlt e : s+ t� := ~Γ ` e : s�; inj1

INR-SEM

~Γ ` inrt e : t+ s� := ~Γ ` e : s�; inj2

CASE-SEM

~Γ ` case e of λx.g else λy.g� := 〈id, ~Γ ` e : s+ t�〉; dist; 〈~Γ, x :s ` f : u�⊕ ~Γ, y : t ` g : u�〉

ABS-SEM

~Γ ` λx : t.e : t→ 2� := Λ~Γ, x : t ` e : 2�

APP-SEM

~Γ ` fe : 2� := 〈~Γ ` f : t→ 2�, ~Γ ` e : t�〉; ev

EQ-SEM

~Γ ` e = f : 2� := 〈~Γ ` e : t�, ~Γ ` f : t�〉; δ

The set-theoretic semantics of HOL is obtained by choosing T to be the topos of sets. In the set-theoretic

semantics, a domain D is a set, the meaning of each type is a set, and the meaning of each morphism is a

total function. More specifically, × denotes cartesian product of sets, + denotes disjoint union of sets, 1

denotes any set with one element, 0 denotes the empty set, and t→ 2 denotes the set of all functions from

t to 2. The meaning of the terms is then fixed by the meaning of the types; for example, π1 is the first

projection morphism of cartesian product, ?t is the unique function from t to the one element set, etc.

3.3 Nested Relational Calculus

The NRC [82] is a family of languages, and we will be using the following formulation. The set of NRC

types is inductively defined as:

t ::= D | 0 | 1 | t× t | t+ t | Pt
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Intuitively, NRC types are the same as HOL types, but we write Pt rather than t→ 2 to indicate sets of t.

This is because under our set-theoretic semantics, t→ 2 will denote characteristic functions, whereas Pt

will represent actual sets. The set of NRC terms is inductively defined as:

e ::= x | () | (e, e) | e.1 | e.2 | ff e | inlt e | inrt e | case e of λx : t.e or λx : t.e | e = e

| for x : t in e.e | emp | sng e | e ∪ e | pow e

The only syntactic differences between NRC and HOL are 1) instead of unbounded set comprehension with

λ, NRC has bounded comprehension with for; 2) there is no NRC term corresponding to ee, as

membership can be derived in NRC (see below); and 3) the NRC has emp, ∪, sng, and pow, which can be

derived in HOL. The three-place typing relation Γ ` e : t is inductively defined as follows, where we have

omitted typing rules that coincide with the HOL rules:

EMP

Γ ` empt : Pt

SNG

Γ ` e : t

Γ ` sng e : Pt

POW

Γ ` e : Pt

Γ ` pow e : P (Pt)

UNION

Γ ` e : Pt Γ ` f : Pt

Γ ` e ∪ f : Pt

FOR

Γ, x :s ` e : t Γ ` f : Ps

Γ ` for x : t in f.e : Pt

The intuitive set-theoretic semantics is that sng e denotes the singleton set {e}, emp denotes the empty set

{}, pow e denotes the power set of e, and for represents a combination of “map” and “union all”:

for x : t in e. f(x) =
⋃
x:t∈e

f(x)

e.g, when e = {1, 2, 3}, for x : t in e. f(x) means f(1) ∪ f(2) ∪ f(3). Using the set-theoretic semantics,

many SQL queries can be written in the NRC; for example, this query projects the first column from a

binary relation R:

R : P (s× t) ` for x : t× t in R. sng x.1 : Ps

This query constructs the cartesian product of two unary relations R and S:

R : Pt, S : Pt ` for x : t in R. for y : t in S. sng (x.1, x.2) : P (s× t)
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We will abbreviate:

if b then e else f := case b of λx :1.e or λy :1.f

for x in X where p return e := for x in X. if P then sng e else emp

mem x X := emp1 , for (y in X) where y = x return ()

cartprod X Y := for x in X.for y in Y. sng (x, y)

disjunion X Y := for x in X.sng inl x ∪ for y in Y.sng inr y

3.3.1 The Power Monad

The categorical semantics of the NRC is defined in terms of a monad [82] (see chapter 1 for a definition of

monads). Hence, to give a semantics to the NRC in a boolean topos T we must construct a monad on T .

To be faithful to the NRC’s set-theoretic semantics, this monad should correspond to the power-set monad

when T is the topos of sets. Fortunately, every topos comes equipped with just such a monad, because

every topos is cartesian closed and has a sub-object classifier, Ω. Let P : T → T the power monad taking

objects X to exponential objects ΩX and morphisms X → Y to morphisms ΩX → ΩY . In the topos of sets,

the power monad is indeed naturally isomorphic (but not equal) to power-set monad, and when working

set-theoretically we will use the power-set monad instead of the power monad. We will write

• PA : powA : P(PA) for the power morphism. Set-theoretically, pow(X) = {Y | Y ⊆ X}.

• A : ηA : PA and P(PA) : µA : PA for P’s unit and join natural transformations, respectively.

Set-theoretically, ηA maps a set A to itself in P(A), and µA unions a set of sets of A into a set of A.

In fact, the power monad will also

• have a zero: a morphism 1 : ∅ : PA. Set-theoretically, zero returns the empty set.

• have a commutative and idempotent plus: a morphism PA× PA : plus : PA. Set theoretically, plus is

binary union.

• have a strength: a morphism A× PB : ρA,B : P(A×B). Set-theoretically,

ρ(a, {b1, . . . , bn}) = {(a, b1), . . . , (a, bn)}
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In summary, we have extended our language for describing morphisms in a topos T with:

A : f : B

PA : P f : PB 1 : ∅ : A PA× PA : plus : PA A× PB : ρ : P(A×B) P(PA) : µ : PA

A : η : PA PA : pow : P(PA)

Power monads cannot be axiomatized completely equationally. In practice, the following (incomplete) set

of equations are used [82]. Define →→ := 〈π1 ◦ π1, 〈π2 ◦ π1, π2〉〉:

P-id

Pid = id

P-comp

P(f ; g) = Pf ;Pg

Monad-1

id = µ ◦ η

Monad-2

id = µ ◦ Pη

Monad-3

µ ◦ µ = µ ◦ Pµ

Zero-1

f ;P(?; ∅);µ = ∅

Zero-2

∅;Pf ;µ = ∅

Plus-Zero

〈f, ∅〉; plus = f

Plus-Comm

〈f, g〉; plus = 〈g, f〉; plus

Plus-Idem

〈f, f〉; plus = f

Str-1

Pπ2 ◦ ρ = π2

Str-2

ρ ◦ (id× η) = η

Str-3

ρ ◦ (id× µ) = µ ◦ Pρ ◦ ρ

Plus-Assoc

〈〈f, g〉; plus, h〉; plus = 〈f, 〈g, h〉; plus〉; plus

3.3.2 Semantics of NRC in a topos

Let T be a topos, D an object of T , and P the power monad or a monad naturally isomorphic to the

power monad. To each type t we inductively define a meaning ~t�TD ∈ Obj(T ) in the same way as for HOL,

but we define:

~Pt� := P~t�, application of P

To each typing derivation Γ ` e : t we inductively define a meaning as a morphism in C:

~Γ ` e : t� : ~Γ�→ ~t�

The exact semantics is as follows, where we have omitted definitions which are the same as in HOL:

EMP-SEM

~Γ ` empt� := ?~Γ�; ∅~t�

PLUS-SEM

~Γ ` e ∪ f : Pt� := 〈~Γ ` e : Pt�, ~Γ ` f : Pt�〉; plus

FOR-SEM

~Γ ` for x : t in e.f : Ps� := 〈id, e〉; ρ;P(f);µ

POW-SEM

~Γ ` pow e : P (Pt)� := ~Γ ` e : Pt�; pow
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3.4 Translating Types

Having defined the syntax and semantics of HOL and the NRC in the previous two sections, in this section

we begin to define our translation [] from HOL to NRC. We translate HOL types to NRC types as:

[1] := 1 [0] := 0 [D] := D [s× t] := [s]× [t] [s+ t] := [s] + [t] [t→ 2] := P [t]

The above translation can be inverted, yielding a translation []−1 from NRC types to HOL types. Let T be

a topos and D an object of T .

Lemma (Type Translation is Isomorphism). For every HOL type t and NRC type t′,

~t�D � ~[t]�D and ~t′�D � ~[t′]−1�D

Proof. By induction on types, noting that for every object X in a topos T , ΩX � PX. �

Set-theoretically, the above says that every subset of a set X can be represented by a characteristic

function X → 2 , and vice versa. To mediate between instances of type t and [t] we need the following

auxiliary definitions:

• Denote by HOLD the full sub-category of T where objects are those generated from HOL’s types;

i.e., objects have the form ~t�D for HOL types t.

• Denote by NRCD the full sub-category of T where objects are those generated from NRC’s types;

i.e., objects have the form ~t�D for NRC types t.

In both cases, morphisms are the same as in T , provided their domain and codomain exist in the

subcategory. As a consequence, there will be many more morphisms in NRCD than can be expressed as

NRC terms. We now define two functors, ↓D: HOLD → NRCD and ↑D: NRCD → HOLD. We will

typically omit the subscript D. On objects,

↓ (~t�) := ~[t]�

On morphisms,

↓ (f : ~s�→ ~t�) : ~[s]�→ ~[t]� := iso1; f ; iso2
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where iso1 : ~[s]�→ ~s� and iso2 : ~t�→ ~[t]� are the isomorphism of the above lemma. The inverse functor

↑ is defined similarly. In effect, we have extended our language for describing morphisms in a topos by

s : f : t

[s] : ↓f : [t]

[s] : f : [t]

s : ↑f : t

ISO-1

↓↑f = f

ISO-2

↑↓f = f

Set-theoretically, ↓ maps characteristic functions to their specified subset, and ↑ does the reverse. For

example, let X = {1, 2}. Then

X → 2 ↓ PX ↑ X → 2

(1 7→ >, 2 7→ >) {1, 2} (1 7→ >, 2 7→ >)

(1 7→ >, 2 7→ ⊥) {1} (1 7→ >, 2 7→ ⊥)

(1 7→ ⊥, 2 7→ >) {2} (1 7→ ⊥, 2 7→ >)

(1 7→ ⊥, 2 7→ ⊥) {} (1 7→ ⊥, 2 7→ ⊥)

The effect of ↓ and ↑ on functions is similar, for example, the negation morphism X → 2 : ¬ : X → 2 is

mapped appropriately:

↓
(
(1 7→ >, 2 7→ ⊥) 7→ (1 7→ ⊥, 2 7→ >)

)
= {1} 7→ {2}

We have, by construction:

Lemma. ↑D and ↓D are an isomorphism of categories between HOLD and NRCD.

and hence the following, which are required for our later semantics preservation proof:

Lemma (PRESERVE).

↓ ?~t� = ?~[t]� ↓ ff ~t� = f ~[t]� ↓ π~s�,~t�1 = π
~[s]�,~[t]�
1 ↓ π~s�,~t�2 = π

~[s]�,~[t]�
2

↓ inj~s�,~t�1 = inj
~[s]�,~[t]�
1 ↓ inj~s�,~t�2 = inj

~[s]�,~[t]�
2 ↓ id~t� = id~[t]� ↓ ev~s�,~t� =↓ ev~[s]�,~[t]�

↓ δ~t� = δ~[t]� ↓ dist~s�,~t�,~u� = dist~[s]�,~[t]�,~[u]� ↓ 〈f, g〉~s�,~t�,~u� = 〈↓f, ↓g〉~[s]�,~[t]�,~[u]�

↓ 〈f ⊕ g〉~s�,~t�,~u� = 〈↓f ⊕ ↓g〉~[s]�,~[t]�,~[u]�

Proof. Because ↓ is an isomorphism of categories. �
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3.5 Change of Domain

To proceed further we need to be able to relate the output of an NRC term q under a domain D1 to the

output of q under a different domain D2. For example, if ~q�D1 is the identity function on D1, then we

want to know that ~q�D2 is the identity function on D2.

Let T be a topos and let ϕ : D1 → D2 a morphism in T . We define by induction on NRC types a

morphism applyϕt : ~t�D1 → ~t�D2 in T :

apply1 := id apply0 := id applys×t := applys × applyt applys+t := applys + applyt

applyPt := Papplyt applyd := ϕ

Intuitively, applyϕt transforms instances of type t over domain D1 to be instances of type t over domain

D2. When ϕ is an inclusion applyϕt is the identity.

Lemma (PUSH-APPLY).

apply; 〈f, g〉 = 〈apply; f, apply; g〉 〈f, g〉; apply = 〈f ; apply, g; apply〉

Proof. Routine - see appendix. �

Lemma (PUSH-↓).

applyϕ~[t]�; (↓f) = ↓(applyϕ~t�; f) (↓f); applyϕ~[t]� = ↓(f ; applyϕ~t�)

Proof. By PRESERVE and that ↓ is a functor. �

3.6 The Active Domain and Universe Queries

In this section we define an NRC expression that computes the active universe of type t on an input

instance I of type t′. Intuitively, we first examine t′ to “shred” I into a set of constants—its active domain.

Then, we examine t to build a new set corresponding to the active universe of type t. More formally, we

define, for each Γ, an NRC expression Ut(Γ) such that Γ ` Ut(Γ) : Pt.
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• First, we define by induction on types a function atoms that maps NRC expressions e such that

Γ ` e : t to NRC expressions atoms(e) such that Γ ` atoms(e) : PD. Intuitively, if e denotes a

complex object of type t, then atoms(e) denotes all the set of all “atoms”, or constants, of type D

that are contained in e.

atoms0(e) := emp atoms1(e) := emp atomsD(e) := sng e

atomss×t(e) := atomss(e.1) ∪ atomst(e.2) atomsPt(e) := for x : t in e. atomst(x)

atomss+t(e) := case e of λx :s.atomss(x) or λy : t.atomst(y)

We extend atoms to map contexts Γ to terms atoms(Γ) such that Γ ` atoms(Γ) : PD:

atoms(−) := atoms(()) atoms(Γ, x : t) := atoms(x) ∪ atoms(Γ)

• Second, we define by induction on types a function univt that maps NRC expressions e such that

Γ ` e : PD to NRC expressions univt(e) such that Γ ` univt(e) : Pt. Intuitively, if e denotes an

“active domain” of type PD, then univt(e) is the “active universe” of type Pt.

univ1(e) := sng () univ0(e) := sng () univD(e) := e univPt(e) := pow univt(e)

univs×t(e) := cartprod univs(e) univt(e) univs+t(e) := disunion univs(e) univt(e)

• Finally, for each Γ, we define an NRC expression Ut(Γ) such that Γ ` Ut(Γ) : Pt as

Ut(Γ) := univt(atoms(Γ)).

Remark. This is the only place where we require the pow operation of the NRC. Thus, we can imagine

translating from HOL to the NRC extended with Ut instead of pow.

3.6.1 Semantics

Having defined the active universe query for NRC we now prove a theorem about its semantics. Let D be

an object in T , and Γ an NRC context. For every point 1 : I : ~Γ�D, there exists a distinguished sub-object

of D, which we call adom(I). We will write adom(I) for both the object and morphism parts of this
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sub-object; i.e., adom(I) : adom(I) ↪→ D. adom(I) is defined as follows. Consider the morphism

1 : f : D → 2 := ↑ (I; ~Γ ` atoms(Γ) : PD�D)

then 1×D : Λf : 2, and since 1×D � D, we have a morphism D : f ′ : 2. In a topos, morphisms from D to

2 are bijective with sub-objects of D. The main lemma of this section states that the active universe Ut(I)

can be computed as the entire universe λx : t.> restricted to the active domain of I:

Lemma (U-SEM). In the topos of sets, for every point 1 : I : ~Γ�D,

I; ~Γ ` U[t](Γ) : P [t]�D = ↓ ~− ` λx : t.> : t→ 2�adom(I); apply
P [t]
adom(I)

Proof. By induction on t, each side is the meaning of t under the active domain, ~[t]�adom(I).

�

3.7 The Translation HOL to NRC

We are finally ready to define a translation [] from HOL terms to NRC terms. The translation maps HOL

typing derivations Γ ` e : t to NRC typing derivations [Γ ` e : t]. The translation is homomorphic on all

typing rules except for APP and ABS. The key idea is to translate λ abstraction as for abstraction over

the active universe.

ABS-TRANS

[Γ, x : t ` e : 2] = [Γ], x : [t] ` e′ : 2

[Γ ` λx : t.e : t→ 2] := [Γ] ` for x : [t] in U([Γ]).e′ : Pt

APP-TRANS

[Γ ` f : t→ 2] = [Γ] ` f ′ : P [t] [Γ ` e : t] = [Γ] ` e′ : [t]

[Γ ` fe : 2] := [Γ] ` e′ mem f ′ : 2

VAR1-TRANS

[Γ, x : t ` x : t] := [Γ], x : [t] ` x : [t]

VAR2-TRANS

[Γ ` x : t] = [Γ] ` x : [t]

[Γ, y :s ` x : t] := [Γ], y : [s] ` x : [t]

EQ-TRANS

[Γ ` e : t] = [Γ] ` e′ : [t] [Γ ` f : t] = [Γ] ` f ′ : [t]

[Γ ` e = f : 2] := [Γ] ` e′ = f ′ : 2
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CASE-TRANS

[Γ ` e : s+ t] = [Γ] ` e′ : [s] + [t]

[Γ, x :s ` f : u] = [Γ], x : [s] ` f ′ : [u] [Γ, y : t ` g : u] = [Γ], y : [t] ` g′ : [u]

[Γ ` case e of λx :s.f or λy : t.g : u] := [Γ] ` case e′ of λx : [s].f ′ or λy : [t].g′ : [u]

UNIT-TRANS

[Γ ` ()] := [Γ] ` () : 1

VOID-TRANS

[Γ ` e : 0] = [Γ] ` e′ : [0]

[Γ ` ff e : t] := [Γ] ` ff e′ : [t]

PROJ1-TRANS

[Γ ` e : t× s] = [Γ] ` e′ : [t]× [s]

[Γ ` e.1 : t] := [Γ] ` e′.1 : [t]

PROJ2-TRANS

[Γ ` e : t× s] = [Γ] ` e′ : [t]× [s]

[Γ ` e.2 : t] := [Γ] ` e′.2 : [s]

PAIR-TRANS

[Γ ` e : s] = [Γ] ` e′ : [s] [Γ ` f : t] = [Γ] ` f ′ : [t]

[Γ ` (e, f) : s× t] := [Γ] ` (e′, f ′) : [s]× [t]

INL-TRANS

[Γ ` e : s] = [Γ] ` e′ : [s]

[Γ ` inlt e : s+ t] := [Γ] ` inl[t] e′ : [s] + [t]

INL-TRANS

[Γ ` e : s] = [Γ] ` e′ : [s]

[Γ ` inrt e : t+ s] := [Γ] ` inr[t] e
′ : [t] + [s]

3.8 Domain independence

Because the translation from HOL to NRC translates unbounded quantification to bounded quantification

over the active universe, it will only be semantics preserving on HOL typing derivations that are

domain-independent. The traditional notion of domain independence for complex objects [78] generalizes to

our categorical setting as follows. Let s and t be NRC types. An object-indexed family of morphisms in T :

qD : ~s�D → ~t�D

is domain-independent when for every monomorphism ϕ : D1 ↪→ D2 in T :

applyϕs ; qD2 = qD1 ; applyϕt (DI − SEM)

If we write I1 vtϕ I2 to mean applytϕ ◦ I1 = I2, then the above condition can be rendered in “logical

relations” form [64]:

I1 vsf I2 implies qD1 ◦ I1 vtf qD2 ◦ I2
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i.e., domain-independent families of morphisms map v-related inputs to v-related outputs. When ϕ is an

inclusion function, applyϕ is the identity and the above becomes

I1 = I2 implies qD1 ◦ I1 = qD2 ◦ I2

which corresponds exactly to the first-order notion of domain independence discussed in the introduction.

Domain independence is also captured by a commutative diagram:

D1� _

ϕ

��

~s�D1

applyϕs

��

qD1 // ~t�D1

applyϕt
��

D2 ~s�D2 qD2
// ~t�D2

Let T↪→ denote the sub-category of T such that the morphisms of T↪→ are the monomorphisms of T . If we

think of ~t�−, for each t, as a functor from T↪→ to T (where the action of ~t�− on morphisms is given by

apply−t ), then our notion of domain independence means that our family of morphisms q is a natural

transformation from the functor ~s�− to the functor ~t�−:

T↪→

~s�−

&&

~t�−

88q−⇓ T

Lemma (DI-COMP). If ~A�D : fD : ~B�D and ~B�D : gD : ~C�D are domain-independent, then so is

~A�D : fD; gD : ~C�D.

Proof. We know that (1) applyA; fD1 = fD2 ; applyB and (2) applyB ; gD1 = gD2 ; applyC . We must show

that applyA; fD1 ; gD1 = fD2 ; gD2 ; applyC . Rewriting the goal by (1) and (2) yields

fD2 ; applyB ; gD1 = fD2 ; applyB ; gD1 . �

Example

Define two HOL expressions p and q:

p := − ` λx :D.> : D → 2 q := − ` λx :D.⊥ : D → 2
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That is, p forms the “universal set” of type D, and q forms the “empty set” of type D. As we now show, p

is not domain-independent, but q is. Assume we are working in the category of sets. Let D1 = {1},

D2 = {1, 2}, and ϕ : D1 ↪→ D2 be the inclusion function ϕ(1) = 1. Since ϕ is an inclusion, applyϕ is the

identity and hence for q to be domain-independent we require that qD1 = qD2 and indeed this is the case,

since both sides are equal to the map − 7→ ∅. But for p to be domain-independent we would expect that

pD1 = pD2 which does not hold, as pD1 is the map − 7→ {∅, {1}} and pD2 is the map

− 7→ {∅, {1}, {2}, {1, 2}}.

3.8.1 Hereditary Domain Independence

A HOL typing derivation is hereditarily domain-independent when it is domain-independent and all of its

sub-derivations are hereditarily domain-independent. An example domain-independent derivation that is

not hereditarily so is

− ` (λx :D.>, λx :D.⊥).2

We conjecture that domain-independent terms always β-normalize into hereditarily domain-independent

terms, but have been unable to prove this.

3.9 Semantics Preservation

We are now in a position to prove that our translation from HOL to NRC preserves semantics:

Theorem. Let T be the topos of sets and suppose Γ ` e : t is a hereditarily domain-independent HOL

typing derivation. Then, for every object D of T ,

↓D ~Γ ` e : t�D = ~[Γ ` e : t]�D

Proof. By induction on the typing derivation Γ ` e : t. The routine cases are in the appendix, and the heart

of the proof is the translation of ABS. We will omit the subscript D and superscript T wherever possible.
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Suppose Γ ` e : t is of the form

Γ, x : t ` e : 2

Γ ` λx : t.e : t→ 2

ABS-SEM

Γ, x : t ` e : 2

~Γ ` λx : t.e : t→ 2� := Λ~Γ, x : t ` e : 2�

ABS-TRANS

[Γ, x : t ` e : 2] = [Γ], x : [t] ` e′ : 2

[Γ ` λx : t.e : t→ 2] := [Γ] ` for x : [t] in U([Γ]).if e′ then sng x else emp : Pt

Our inductive hypothesis is

di(~Γ, x : t ` e : 2�) implies ↓ ~Γ, x : t ` e : 2� = ~[Γ, x : t ` e : 2]�

We wish to show that

↓ ~Γ ` λx : t.e : t→ 2� = ~[Γ ` λx : t.e : t→ 2]�

We calculate (where we will prove step BOUND momentarily):

↓ ~Γ ` λx : t.e : t→ 2�

= ABS − SEM

↓ Λ~Γ, x : t ` e : 2�

= ISO

↓ Λ ↑↓ ~Γ, x : t ` e : 2�

= IH

↓ Λ ↑ ~[Γ, x : t ` e : 2]�

= ABS − TRANS

↓ Λ ↑ ~[Γ], x : [t] ` e′ : 2�

= BOUND

~[Γ] ` for x : [t] in U([Γ]).if e′ then sng x else emp : Pt�

= ABS − TRANS

~[Γ ` λx : t.e : t→ 2]�
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We prove the step BOUND as follows. We want to show that

↓ Λ ↑ ~[Γ], x : [t] ` e′ : 2�

=

~[Γ] ` for x : [t] in U([Γ]).if e′ then sng x else emp : P [t]�

We will refer to the upper and low parts of the above equation as lhs and rhs, respectively. Let D be a set.

Then lhs and rhs denote functions:

~[Γ]�D → P~[t]�D

Let I ∈ ~[Γ]�D be a set. Then lhs(I) and rhs(I) are both sets of ~[t]�Ds. In particular, we know that

rhs(I) ⊆ lhs(I): (
↓ Λ ↑ ~[Γ], x : [t] ` e′ : 2�D

)
(I)

⋂
~[Γ ` U([Γ)]�D(I)

=

~[Γ] ` for x : [t] in U([Γ]).if e′ then sng x else emp : P [t]�D(I)

So, to prove BOUND it suffices to show:

(
↓ Λ ↑ ~[Γ], x : [t] ` e′ : 2�D

)
(I) ⊆ ~[Γ ` U([Γ)]�D(I) (3.1)

If it were the case that lhs was an arbitrary function, then when applied to I lhs may yield an arbitrary

set of ~[t]�Ds, and (3.1) will be false. However, we know that lhs is not an arbitrary function, but is

domain-independent—by above, it is equal to ~Γ ` λx : t.e�, which we assumed was domain-independent.

This means that for any sets D1 and D2, any injective function f : D1 ↪→ D2, every I ∈ ~Γ�D1 , and every

J ∈ ~Γ�D2 ,

I v[Γ]
f J implies

(
↓ Λ ↑ ~[Γ], x : [t] ` e′ : 2�

)
D1

(I) v[t]
f

(
↓ Λ ↑ ~[Γ], x : [t] ` e′ : 2�

)
D2

(J)

We choose D1 to be atoms(I) and D2 to be D, so that atoms(I) ⊆ D and f(x) = x is the obvious set

inclusion function. We know that I ∈ ~Γ�atoms(I) and I ∈ ~Γ�D, so we can use our I as both I and J .
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Since we have an inclusion function rather than just an injection, we can replace v with =:

(
↓ Λ ↑ ~[Γ], x : [t] ` e′ : 2�

)
atoms(I)(I) =

(
↓ Λ ↑ ~[Γ], x : [t] ` e′ : 2�

)
D(I) (3.2)

Substituting (3.2) into (3.1) gives a new goal

(
↓ Λ ↑ ~[Γ], x : [t] ` e′ : 2�

)
atoms(I)(I) ⊆ ~[Γ] ` U([Γ])�D(I) (3.3)

By definition of U (lemma U-SEM), we have that

(
↓ Λ ↑ ~−, x : [t] ` > : 2�

)
atoms(I) = ~[Γ] ` U([Γ])�D(I) (3.4)

Substituting (3.4) into (3.3) gives a new goal

(
↓ Λ ↑ ~[Γ], x : [t] ` e′ : 2�

)
atoms(I)(I) ⊆

(
↓ Λ ↑ ~−, x : [t] ` > : 2�

)
atoms(I) (3.5)

Which completes the proof (since e′ ≤ >). �

3.10 Translating NRC to HOL

The reverse translation []−1, where below we suppress the superscript −1, is

EMP-TRANS

[Γ ` empt : Pt] := [Γ] ` λx : [t].⊥ : [t]→ 2

SNG-TRANS

[Γ ` e : t] = [Γ] ` e′ : [t]

[Γ ` sng e : Pt] := [Γ] ` λx : [t].x = e′ : [t]→ 2

POW-TRANS

[Γ ` e : Pt] = [Γ] ` e′ : [t]→ 2

[Γ ` pow e : P (Pt)] := [Γ] ` λx : [t]→ 2.∀y : [t].xy ⇒ e′y : ([t]→ 2)→ 2

UNION-TRANS

[Γ ` e : Pt] = [Γ] ` e′ : [t]→ 2 [Γ ` f : Pt] = [Γ] ` f ′ : [t]→ 2

[Γ ` e ∪ f ` Pt] := [Γ] ` λx : [t].e′x ∨ f ′x : [t]→ 2
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FOR-TRANS

[Γ ` e : Pt] = [Γ] ` e′ : [t]→ 2 [Γ, x : t ` f(x) : Ps] = [Γ], x : [t] ` f ′(x) : [s]→ 2

[Γ ` for x : t in e.f : Ps] := [Γ] ` λy : [s].∃x : [t].e′x ∧ f ′(x)y : [s]→ 2

In the foregoing, we have omitted the homomorphic translations which are the same as the translation

from HOL to NRC.

Lemma. Suppose Γ ` e : t is an NRC typing derivation. Let T be a topos. Then for every D ∈ Obj(T ),

↑ ~Γ ` e : t�D = ~[Γ ` e : t]−1�D

Proof. Routine induction - done in Coq. �

3.11 Related Work

Two pieces of especially related work are a translation of first-order set theory into NRA [1], and a

translation of the NRC into SQL [23].

Abiteboul and Beeri define a first-order, many sorted calculus which we call first-order set theory

(FOST) [1]:

t ::= 1 | t× t | Pt | D

e ::= x | () | (e, e) | e.1 | e.2 | > | ⊥ | e ∧ e | e ∨ e | e⇒ e | ¬e | e = e | ∀x : t.e | ∃x : t.e | e ∈ e | e ⊆ e

They also define a notion of domain independence for FOST (under set-theoretic, not topos, semantics)

and provide a translation of FOST into NRA. In fact, their active domain query is the same as ours.

Compared to HOL, FOST lacks λ-abstraction and function application and includes predicates ∈ and ⊆.

An alternative approach to translating from HOL to NRA would be to translate from HOL to FOST by

eliminating λ-abstraction in favor of ∀ and ∃. Our approach in this chapter is the opposite, elimination of ∀

and ∃ in favor of λ.

The Links language allows certain fragments of HOL to be implemented as a combination of the

simply-typed λ-calculus and SQL [23]. Rather than attempt to compute the active domain and perform

comprehensions over it as we do, which can be inefficient, Links uses a type and effect system to identify

HOL fragments that can be effectively implemented as SQL.
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3.12 Future Work

HOL is traditionally understood to restrict function types to the form t→ 2 [53]. However, it is easy to

extend HOL, the NRC, and our translation to arbitrary function types t→ s. Semantically, a topos is

cartesian closed for all types, not just 2, so the meaning of such terms is straightforward [53]. We can

extend our translation HOL to NRC as follows, by “reifying” functions as relations:

[s→ t] := P ([s]× [t]) (t , 2)

[Γ ` f : s→ t] = [Γ] ` f ′ : P ([s]× [t]) [Γ ` e : s] = [Γ] ` e′ : [s]

[Γ ` fe : t] := [Γ] ` ι
(
for x : s× t in f ′.where x.1 = e′ return x.2

)
: [t]

[Γ;x : t ` e(x) : s] = [Γ], x : [t] ` e′(x) : [s]

[Γ ` λx : t.e(x) : t→ s] := for y : t× s in U[s]→[t](Γ). where y.2 = e′(y.1) return y : P ([t]× [s])

In the foregoing, we have added a description operator ιt : Pt→ t to the NRC. Semantically, ι e should

choose an element from a non-empty set e. If e is empty, then ι should return an arbitrary value of type t.

Hence, this translation may be problematic with empty types such as 0. The description operator ι is often

assumed in proof assistants for higher-order logic, such as Isabelle/HOL [66]. Of course, we must also take

care that when we generate the active universe U(Γ) for a function type s→ t, we generate only functional

relations P (s× t), not arbitrary relations. Another subtle point is that we should still translate types t→ 2

as Pt, because if we reify t→ 2 as P (t× 2) then translated instances of type t→ 2 will in fact contain

every constant of type t (since t→ 2 must be total).

3.13 Coq Mechanization

We have mechanized in Coq [11] all the results of this chapter, except for one part of the proof of the ABS

case of the HOL to NRC translation that requires specializing to the topos of sets and hence can not be

done using our particular encoding of HOL in Coq. The entire development is several thousand lines and

proceeds similarly to the paper development, except that we use the variable-free categorical syntax for

HOL. We include some key definitions here. To model a boolean topos, we assume Coq axioms for classical

logic, and equate Prop with bool using the standard library axiom excluded middle informative.
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Inductive ty : Set :=

| one : ty

| prop : ty

| prod : ty -> ty -> ty

| pow : ty -> ty

| dom : ty

| zero : ty

| sum : ty -> ty -> ty.

Fixpoint inst (t: ty) : Set -> Type :=

fun (D: Set) =>

match t with

| one => unit

| prod t1 t2 => inst t1 D * inst t2 D

| pow t’ => inst t’ D -> Prop

| dom => D

| prop => Prop

| sum t1 t2 => inst t1 D + inst t2 D

| zero => void

end.

Fixpoint apply {D1 D2 : Set} (f: D1 -> D2) {t} : inst t D1 -> inst t D2 :=

match t as t return inst t D1 -> inst t D2 with

| one => fun I => I

| prod t1 t2 => fun I => (apply f (fst I), apply f (snd I))

| dom => f

| pow t’ => fun I => Im I (apply f)

| prop => fun I => I

| zero => fun I => I
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| sum t1 t2 => fun I => match I with

| inl I’ => inl (apply f I’)

| inr I’ => inr (apply f I’)

end

end.

Definition di {G t} (e: forall D, inst G D -> inst t D)

:= forall (D1 D2: Set) (f: D1 -> D2) (pf: mono f) I,

apply f (e D1 I) = e D2 (apply f I) .

(* hdi is simple, so omit it here *)

Inductive exp : ty -> ty -> Set :=

| equal : forall {t}, exp (prod t t) prop

| inj1 : forall {t1 t2}, exp t1 (sum t1 t2)

| inj2 : forall {t1 t2}, exp t2 (sum t1 t2)

| case : forall {t1 t2 t3}, exp t1 t3 -> exp t2 t3 -> exp (sum t1 t2) t3

| id : forall {t}, exp t t

| comp : forall {t1 t2 t3}, exp t1 t2 -> exp t2 t3 -> exp t1 t3

| star : forall {t}, exp t one

| pi1 : forall {t1 t2}, exp (prod t1 t2) t1

| pi2 : forall {t1 t2}, exp (prod t1 t2) t2

| pair : forall {t1 t2 t3}, exp t1 t2 -> exp t1 t3 -> exp t1 (prod t2 t3)

| ev : forall {t}, exp (prod (pow t) t) prop

| curry : forall {t1 t2}, exp (prod t1 t2) prop -> exp t1 (pow t2)

| contra : forall {t}, exp zero t

| boolean1 : exp prop (sum one one)

| boolean2 : exp (sum one one) prop

| dist1 : forall {a b c}, exp (prod a (sum b c)) (sum (prod a b) (prod a c))

| dist2 : forall {a b c}, exp (sum (prod a b) (prod a c)) (prod a (sum b c)).
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Fixpoint denote {G t: ty} (e: exp G t) D : inst G D -> inst t D :=

match e in exp G t return inst G D -> inst t D with

| id t => fun I => I

| comp t1 t2 t3 f g => fun I => denote g D (denote f D I)

| star t => fun I => tt

| pi1 t1 t2 => fun I => fst I

| pi2 t1 t2 => fun I => snd I

| pair t1 t2 t3 f g => fun I => (denote f D I, denote g D I)

| ev t => fun I => (fst I) (snd I)

| curry t1 t2 f => fun I =>

(fun J => denote f D (I, J))

| equal t => fun I => fst I = snd I

| inj1 t1 t2 => inl

| inj2 t1 t2 => inr

| case t1 t2 t3 f g => fun I => match I with

| inl i => denote f D i

| inr i => denote g D i

end

| contra t => fun I => match I with end

| boolean1 => fun I => match excluded_middle_informative I with

| left _ => inl tt

| right _ => inr tt

end

| boolean2 => fun I => match I with

| inl _ => True

| inr _ => False

end

| dist1 a b c => fun I => match snd I with

| inl l => inl (fst I, l)

| inr r => inr (fst I, r)

end
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| dist2 a b c => fun I => match I with

| inl l => (fst l, inl (snd l))

| inr r => (fst r, inr (snd r))

end

end.

Inductive expB : ty -> ty -> Type :=

| equalB : forall {t}, expB (prod t t) prop

| inj1B : forall {t1 t2}, expB t1 (sum t1 t2)

| inj2B : forall {t1 t2}, expB t2 (sum t1 t2)

| caseB : forall {t1 t2 t3}, expB t1 t3 -> expB t2 t3 -> expB (sum t1 t2) t3

| idB : forall {t}, expB t t

| compB : forall {t1 t2 t3}, expB t1 t2 -> expB t2 t3 -> expB t1 t3

| starB : forall {t}, expB t one

| pi1B : forall {t1 t2}, expB (prod t1 t2) t1

| pi2B : forall {t1 t2}, expB (prod t1 t2) t2

| pairB : forall {t1 t2 t3}, expB t1 t2 -> expB t1 t3 -> expB t1 (prod t2 t3)

| mzero : forall {t}, expB one (pow t)

| mplus : forall {t}, expB (prod (pow t) (pow t)) (pow t)

| mjoin : forall {t}, expB (pow (pow t)) (pow t)

| munit : forall {t}, expB t (pow t)

| mpow : forall {t}, expB (pow t) (pow (pow t))

| mmap : forall {t1 t2}, expB t1 t2 -> expB (pow t1) (pow t2)

| boolean1B : expB prop (sum one one)

| boolean2B : expB (sum one one) prop

| str : forall {t1 t2}, expB (prod t1 (pow t2)) (pow (prod t1 t2))

| contraB : forall {t}, expB zero t

| dist1B : forall {a b c}, expB (prod a (sum b c)) (sum (prod a b) (prod a c))

| dist2B : forall {a b c}, expB (sum (prod a b) (prod a c)) (prod a (sum b c)).
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Fixpoint denoteB {G t: ty} (e: expB G t) D : inst G D -> inst t D :=

match e in expB G t return inst G D -> inst t D with

| idB t => fun I => I

| compB t1 t2 t3 f g => fun I => denoteB g D (denoteB f D I)

| starB t => fun I => tt

| pi1B t1 t2 => fun I => fst I

| pi2B t1 t2 => fun I => snd I

| pairB t1 t2 t3 f g => fun I => (denoteB f D I, denoteB g D I)

| equalB t => fun I => fst I = snd I

| inj1B t1 t2 => inl

| inj2B t1 t2 => inr

| caseB t1 t2 t3 f g => fun I => match I with

| inl i => denoteB f D i

| inr i => denoteB g D i

end

| mzero t => fun I => Empty_set _

| mplus t => fun I => Union (fst I) (snd I)

| mjoin t => fun I => join I

| munit t => fun I => Singleton I

| mpow t => fun I => Power_set I

| mmap t1 t2 f => fun I => Im I (denoteB f D)

| boolean1B => fun I => match excluded_middle_informative I with

| left _ => inl tt

| right _ => inr tt

end

| boolean2B => fun I => match I with

| inl _ => True

| inr _ => False

end

| str t1 t2 => fun I => Im (snd I) (fun J => (fst I, J))

| contraB t => fun I => match I with end
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| dist1B a b c => fun I => match snd I with

| inl l => inl (fst I, l)

| inr r => inr (fst I, r)

end

| dist2B a b c => fun I => match I with

| inl l => (fst l, inl (snd l))

| inr r => (fst r, inr (snd r))

end

end.

Fixpoint holToNrc {G t: ty} (e: exp G t) : expB G t :=

match e in exp G t return expB G t with

| id t => idB

| comp t1 t2 t3 f g => compB (holToNrc f) (holToNrc g)

| star t => starB

| pi1 t1 t2 => pi1B

| pi2 t1 t2 => pi2B

| pair t1 t2 t3 f g => pairB (holToNrc f) (holToNrc g)

| ev t =>

let rhs := compB starB munit in

let xxx := whereB (compB (pairB pi2B (compB pi1B pi2B)) equalB)

(compB starB munit) pi1B in

compB (pairB xxx rhs) equalB

| curry t1 t2 f => whereB (holToNrc f) (compB pi2B munit) UB

| equal t => equalB

| inj1 t1 t2 => inj1B

| inj2 t1 t2 => inj2B

| case t1 t2 t3 f g => caseB (holToNrc f) (holToNrc g)

| contra t => contraB

| boolean1 => boolean1B
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| boolean2 => boolean2B

| dist1 a b c => dist1B

| dist2 a b c => dist2B

end.

(* the following requires specializing to the topos of sets, and must be assumed *)

Conjecture must_assume: forall

(t1 : ty)

(t2 : ty)

(e : exp (prod t1 t2) prop)

(H0 : di (denote (curry e)))

(H1 : hdi e)

(D : Set)

(I : inst t1 D),

Included _ (fun J => denote e D (I, J)) (fun J => denoteB UB D I J).

Theorem semPres_holToNrc {G t} : forall (e: exp G t),

hdi e -> denote e = denoteB (holToNrc e).
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3.14 Appendix

3.14.1 Basic Lemmas

Lemma (PUSH-APPLY).

apply; 〈f, g〉 = 〈apply; f, apply; g〉 〈f, g〉; apply = 〈f ; apply, g; apply〉

Proof.

• First we show

apply; 〈f, g〉 = 〈apply; f, apply; g〉

We know that

〈f, g〉;π1 = f 〈f, g〉;π2 = g

and indeed,

apply; 〈f, g〉;π1 = apply; f apply; 〈f, g〉;π2 = apply; g

rewriting our goal gives a new goal

apply; 〈f, g〉 = 〈apply; 〈f, g〉;π1, apply; 〈f, g〉;π2〉

which follows from strong pairing (i.e., x = 〈x;π1, x;π2〉).

• Next we show

〈f, g〉; apply = 〈f ; apply, g; apply〉

By definition of apply, we may instead show

〈f, g〉; 〈π1; apply, π2; apply〉 = 〈f ; apply, g; apply〉

From the bullet point above, we may instead show the following, which is easy:

〈〈f, g〉;π1; apply, 〈f, g〉;π2; apply〉 = 〈f ; apply, g; apply〉

�
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Lemma (PROJ-DI). Projection is domain-independent.

Proof. We must show that applyA×B ;π1 = π1; applyA. By definition of apply, we know that

applyA×B = 〈π1; applyA, π2; applyB〉. Substituting into our goal gives a new goal of

〈π1; applyA, π2; applyB〉;π1 = π1; applyA, which follows by definition of π1. �

Lemma (IN-MONO). In the topos of sets,

f ; inj1 = g; inj1 implies f = g f ; inj2 = g; inj2 implies f = g

Proof. The maps x 7→inj1 (x, 0) and x 7→inj2 (x, 1) are bijections, and hence injective; in Set, injective

functions are monomorphisms. �

Lemma (PAIR-INJ).

〈f, g〉 = 〈f ′, g′〉 implies f = f ′ and g = g′

Proof. From 〈f, g〉 = 〈f ′, g′〉 we have 〈f, g〉;π1 = 〈f ′, g′〉;π1 and hence f = f ′. �

Lemma (↓-INJ).

↓ f =↓ g implies f = g

Proof. ↓ is a bijection Hom(~s�, ~t�) � Hom(~[s]�, ~[t]�) �

Lemma (Λ-INJ).

Λf = Λg implies f = g

Proof. In a CCC, Λ is a bijection Hom(A×B,C) � Hom(A,CB). �

Lemma (ABS-IND-HELPER). Let f : G× T → 2 and h : T → S be morphisms in the topos of sets.

Writing P(X) := 2X for the exponential functor and f × g := 〈π1; f, π2; g〉,

(id× h); (Λf ;P (h))× id; app = f

Proof. Suppose (g, t) 7→ f(g, t) is in f : G× T → 2. Then g 7→ {(t, f(g, t))|t ∈ T} is in Λf : G→ 2T . Then

g 7→ {(h(t), f(g, t))|t ∈ T} is in Λf ;P (h) : G→ 2S . Then (g, t) 7→ ({(h(t), f(g, t))|t ∈ T}, h(t)) is in

Λf ;P (h)× h : G× T → 2S × S. Then (g, t) 7→ f(g, t) is in Λf ;P (h)× h; ev : G× T → 2. �
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Lemma (APP-HELPER). In the topos of sets,

〈~[Γ] ` f ′ : [t]→ [2]�, ~[Γ] ` e′ : [t]�〉; ↓ ev = ~[Γ] ` e′ mem f ′ : [2]�

Proof. Follows by PRESERVE and noting that, in the topos of sets, both the evaluation map ev and the

meaning of the NRC expression mem denote actual set membership; e.g., the binary predicate ∈. �

3.14.2 Applicability of Inductive Hypothesis

Domain independence is logical for introduction rules, but not logical for elimination rules:

• Case PROJ1. Counterexample: − ` (λx : t.⊥, λx : t.>).1 is domain-independent, but

− ` (λx : t.⊥, λx : t.>) is not.

• Case CASE. Similar to above.

• Case EQ. Counterexample: − ` λx : t.> = λx : t.>.

• Case APP. Counterexample: − ` (λx : t→ 2.>)(λy : t.>) : 2 .This is equivalent to the constant

morphism true : 1→ 2, but neither sub-expression is domain-independent.

Lemma (VAR2-IND).

di(~Γ, y : s ` x : t�) implies di(~Γ ` x : t�)

Proof. We need not use antecedent, as ~Γ ` x : t� is a composition of projections, and projection is

domain-independent (PROJ-DI), and composition preserves domain independence (DI-COMP). �

Lemma (PAIR-IND).

di(~Γ ` (e, f) : s× t�) implies di(~Γ ` e : s�) and di(~Γ ` f : t�)

Proof. Because ~Γ ` (e, f) : s× t� is domain-independent, we know (DI-SEM) that for every ϕ : D1 ↪→ D2,

applyϕ~Γ�; ~Γ ` (e, f) : s× t�D2 = ~Γ ` (e, f) : s× t�D1 ; applyϕ~t�
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Re-writing by PAIR-SEM gives

applyϕ~Γ�; 〈~Γ ` e : s�D2 , ~Γ ` f : t�D2〉 = 〈~Γ ` e : s�D1 , ~Γ ` f : t�D1〉; apply
ϕ
~t�

Re-writing by PUSH-APPLY gives

〈applyϕ~Γ�; ~Γ ` e : s�D2 , apply
ϕ
~Γ�; ~Γ ` f : t�D2〉 = 〈~Γ ` e : s�D1 ; applyϕ~t�, ~Γ ` f : t�D1 ; applyϕ~t�〉

The result then follows from PAIR-INJ. �

Lemma (INJ-IND).

di(~Γ ` inlt e : s+ t�) implies di(~Γ ` e : s�)

Proof. Because ~Γ ` inlt e : s+ t� is domain-independent, we know (DI-SEM) that for every ϕ : D1 ↪→ D2,

applyϕΓ ; ~Γ ` inlt e : s+ t�D2 = ~Γ ` inlt e : s+ t�D1 ; applyϕs+t

Re-writing by INL-SEM, we have

applyϕΓ ; ~Γ ` e : s�D2 ; inj1 = ~Γ ` e : s�D1 ; inj1; applyϕs+t

By definition of apply,

applyϕΓ ; ~Γ ` e : s�D2 ; inj1 = ~Γ ` e : s�D1 ; inj1; 〈applyϕs ; inj1 ⊕ applyϕt ; inj2〉

By SUM-BETA,

applyϕΓ ; ~Γ ` e : s�D2 ; inj1 = ~Γ ` e : s�D1 ; applyϕs ; inj1

The result then follows from IN-MONO. �

Lemma (ABS-IND). In the topos of sets,

di(↓ ~Γ ` λx : t.e : t→ 2�) implies di(↓ ~Γ, x : t ` e : 2�)
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Proof. We will prove a slightly more general result. Let fD : ~G× t�D → 2 be a family of morphisms

indexed by D. If ΛfD is domain-independent, then so is fD. For expediency we extend the apply operation

to work over HOL types t→ 2, which is trivial because ~t→ 2� � ~Pt�.

We start with the statement of domain independence for Λf :

applyG; ΛfD2 = ΛfD1 ; apply2t

Applying the product functor and composing with app yields (recall that f × g := 〈π1; f, π2; g〉):

applyG × id; ΛfD2 × id; app = ΛfD1 × id; apply2t × id; app

β reduction then yields

applyG × id; fD2 = ΛfD1 × id; apply2t × id; app

composing with id× applyt yields

id× applyt; applyG × id; fD2 = id× applyt; ΛfD1 × id; apply2t × id; app

and rearranging yields

applyG × applyt; fD2 = (ΛfD1 ; apply2t)× applyt; app

by definition of apply, this yields

applyG×t; fD2 = (ΛfD1 ; apply2t)× applyt; app (known)

Because our goal is to prove that

applyG×t; fD2 = fD1 ; apply2

and apply2 is the identity, it suffices by (known) to show

(ΛfD1 ; apply2t)× applyt; app = fD1 (goal)

where (goal) is proved as a separate lemma (ABS-IND-HELPER).

�
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3.14.3 Semantics Preservation, Other Cases

We now proves the semantic equivalence of the identity part of our translations HOL to NRC and NRC to

HOL (by replacing ↓ with ↑ and [] by []−1). We also prove the APP case here. ABS is inline in the text.

Note that this only works for hereditarily domain-independent HOL expressions (it is easy to show that all

NRC expressions are domain-independent).

Lemma. Suppose Γ ` e : t is a HOL typing derivation. Let T be a topos. Then for every object D in T

↓D ~Γ ` e : t�D = ~[Γ ` e : t]�D

Proof. By induction on Γ ` e : t. First, we tackle the introduction rules:

• Case VAR1. Suppose Γ ` e : t is of the form

VAR1

Γ, x : t ` x : t

VAR1-TRANS

[Γ, x : t ` x : t] = [Γ], x : [t] ` x : [t]

VAR1-SEM

~Γ, x : t ` x : t� = π~Γ�,~t�1

We wish to show that

↓ ~Γ, x : t ` x : t� = ~[Γ, x : t ` x : t]�

We calculate:

↓ ~Γ, x : t ` x : t�

= V AR1− SEM

↓ π~Γ�,~t�2

= PRESERV E

π
~[Γ]�,~[t]�
2

= V AR1− SEM

↓ ~[Γ], x : [t] ` x : [t]�

= V AR1− TRANS

~[Γ, x : t ` x : t]�
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• Case VAR2. Suppose Γ ` e : t is of the form

VAR2

Γ ` x : t

Γ, y : s ` x : t

VAR2-TRANS

[Γ ` x : t] = [Γ] ` x′ : [t]

[Γ, y : s ` x : t] = [Γ], y : [s] ` x′ : [t]

VAR2-SEM

~Γ, y : s ` x : t� = π~Γ�,~s�1 ; ~Γ ` x : t�

Our inductive hypothesis is

di(~Γ ` x : t�) implies ↓ ~Γ ` x : t� = ~[Γ ` x : t]�

We wish to show that

↓ ~Γ, y : s ` x : t� = ~[Γ, y : s ` x : t]�

We calculate:

↓ ~Γ, y : s ` x : t�

= V AR2− SEM

↓ (π1; ~Γ ` x : t�)

= FUNCTOR

(↓ π1); (↓ ~Γ ` x : t�)

= PRESERV E

π1; (↓ ~Γ ` x : t�)

= IH with V AR2− IND

π1; ~[Γ ` x : t]�

= V AR2− TRANS

π1; ~[Γ] ` x′ : [t]�

= V AR2− SEM

~[Γ], y : [s] ` x′ : [t]�

= V AR2− TRANS

~[Γ, y : s ` x : t]�
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• Case UNIT. Suppose Γ ` e : t is of the form

UNIT

Γ ` () : 1

UNIT-TRANS

[Γ ` () : 1] = [Γ] ` () : 1

UNIT-SEM

~Γ ` () : 1� = ?~Γ�

We wish to show that

↓ ~Γ ` () : 1� = ~[Γ ` () : 1]�

We calculate:

↓ ~Γ ` () : 1�

= UNIT − SEM

↓ ?~Γ�

= PRESERV E

?~[Γ]�

= UNIT − SEM

~[Γ] ` () : 1�

= UNIT − TRANS

~[Γ ` () : 1]�

• Case PAIR. Suppose Γ ` e : t is of the form

PAIR

Γ ` e : s Γ ` f : t

Γ ` (e, f) : s× t

PAIR-TRANS

[Γ ` e : s] = [Γ] ` e′ : [s] [Γ ` f : t] = [Γ] ` f ′ : [t]

[Γ ` (e, f) : s× t] := [Γ] ` (e′, f ′) : [s]× [t]

PAIR-SEM

Γ ` e : s Γ ` f : t

~Γ ` (e, f) : s× t� := 〈~Γ ` e : s�, ~Γ ` f : t�〉

Our inductive hypotheses are

di(~Γ ` e : s�) implies ↓ ~Γ ` e : s� = ~[Γ ` e : s]�
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and

di(~Γ ` f : t�) implies ↓ ~Γ ` f : t� = ~[Γ ` f : t]�

We wish to show that

↓ ~Γ ` (e, f) : s× t� = ~[Γ ` (e, f) : s× t]�

We calculate:

↓ ~Γ ` (e, f) : s× t�

= PAIR− SEM

↓ 〈~Γ ` e : s�, ~Γ ` f : t�〉

= PUSH− ↓

〈↓ ~Γ ` e : s�, ↓ ~Γ ` f : t�〉

= IH

〈~[Γ ` e : s]�, ~[Γ ` f : t�]〉

= PAIR− TRANS

〈~[Γ] ` e′ : [s]�, ~[Γ] ` f ′ : [t]�〉

= PAIR− SEM

~[Γ] ` (e′, f ′) : [s]× [t]�

= PAIR− TRANS

~[Γ ` (e, f) : s× t]�

• Case INL. Suppose Γ ` e : t is of the form

INL

Γ ` e : s

Γ ` inlt e : s+ t

INL-SEM

Γ ` e : s

~Γ ` inlt e : s+ t� := ~Γ ` e : s�; inj1

INL-TRANS

[Γ ` e : s] = [Γ] ` e′ : [s]

[Γ ` inlt e : s+ t] := [Γ] ` inl[t] e′ : [s] + [t]
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Our inductive hypothesis is

di(~Γ ` e : s�) implies ↓ ~Γ ` e : s� = ~[Γ ` e : s]�

We wish to show that

↓ ~Γ ` inlt e : s+ t� = ~[Γ ` inlt e : s+ t]�

We calculate:

↓ ~Γ ` inlt e : s+ t�

= INL− SEM

↓ (~Γ ` e : s�; inj1)

= FUNCTOR

(↓ ~Γ ` e : s�); (↓ inj1)

= PRESERV E

(↓ ~Γ ` e : s]�); inj1

= IH with INL− IND

~[Γ ` e : s]�; inj1

= INL− TRANS

~[Γ] ` e′ : [s]�; inj1

= INL− SEM

~[Γ] ` inl[t] e′ : [s] + [t]�

= INL− TRANS

~[Γ ` inlt e : s+ t]�

• Case INR. Similar to INL

Next, we tackle the elimination rules, which can only invoke their IHs because of the hereditarily

domain-independence requirement.
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• Case VOID. Suppose Γ ` e : t is of the form

VOID

Γ ` e : 0

Γ ` ff e : t

VOID-TRANS

[Γ ` e : 0] = [Γ] ` e′ : [t]

[Γ ` ff e : 1] := [Γ] ` ff e′ : [t]

VOID-SEM

~Γ ` ff e : t� = ~Γ ` e : 0�; ff ~t�

We wish to show that

↓ ~Γ ` ff e : t� = ~[Γ ` ff e : t]�

Our inductive hypothesis is that

↓ ~Γ ` e� : 0 = ~[Γ ` e : 0]�

We calculate:

↓ ~Γ ` ff e : t�

= V OID − SEM

↓ ~Γ ` e : 0�; ff ~t�

= FUNCTOR

(↓ ~Γ ` e : 0�); (↓ ff ~t�)

= IH

~[Γ ` e : 0]�; ↓ ff ~t�

= PRESERV E

~[Γ ` e : 0]�; ff ~[t]�

= V OID − TRANS

~[Γ] ` e′ : [0]�; ff ~[0]�

= V OID − SEM

~[Γ] ` ff e′ : [t]�

= V OID − TRANS

~[Γ ` ff e : t]�
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• Case PROJ1. Suppose Γ ` e : t is of the form

PROJ1

Γ ` e : s× t

Γ ` e.1 : s

PROJ1-TRANS

[Γ ` e : s× t] = [Γ] ` e′ : [s]× [t]

[Γ ` e.1 : s] = [Γ] ` e′.1 : [s]

PROJ1-SEM

Γ ` e : s× t

~Γ ` e.1 : s� := ~Γ ` e : s× t�;π1

Our inductive hypothesis is that

di(~Γ ` e : s× t�) implies ↓ ~Γ ` e : s× t� = ~[Γ ` e : s× t]�

We wish to show that

↓ ~Γ ` e.1 : s� = ~[Γ ` e.1 : s]�

We calculate:

↓ ~Γ ` e.1 : s�

= PROJ1− SEM

↓ (~Γ ` e : s× t�;π1)

= FUNCTOR

(↓ ~Γ ` e : s× t�); (↓ π1)

= PRESERV E

↓ ~Γ ` e : s× t�;π1

= IH with PROJ1− IND

~[Γ ` e : s× t]�;π1

= PROJ1− TRANS

~[Γ] ` e′ : [s]× [t]�;π1

= PROJ1− SEM

~[Γ] ` e′.1 : [s]�

= PROJ1− TRANS

~[Γ ` e.1 : s]�
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• Case PROJ2. Similar to PROJ1.

• Case CASE. Suppose Γ ` e : t is of the form

CASE

Γ ` e : s+ t Γ, x :s ` f : u Γ, y : t ` g : u

Γ ` case e of λx :s.f or λy : t.g : u

CASE-SEM

Γ ` e : s+ t Γ, x :s ` f : u Γ, y : t ` g : u

~Γ ` case e of λx :s.f else λy : t.g : u� :=

〈id, ~Γ ` e : s+ t�〉; dist; 〈~Γ, x :s ` f : u�⊕ ~Γ, y : t ` g : u�〉

CASE-TRANS

[Γ ` e : s+ t] = [Γ] ` e′ : [s] + [t]

[Γ, x :s ` f : u] = [Γ], x : [s] ` f ′ : [u] [Γ, y : t ` g : u] = [Γ], y : [t] ` g′ : [u]

[Γ ` case e of λx :s.f or λy : t.g : u] := [Γ] ` case e′ of λx : [s].f ′ or λy : [t].g′ : [u]

Our inductive hypothesis is

di(↓ ~Γ ` e : s+ t�) implies ↓ ~Γ ` e : s+ t� = ~[Γ ` e : s+ t]�

and

di(↓ ~Γ, x :s ` f : u�) implies ↓ ~Γ, x :s ` f : u� = ~[Γ, x :s ` f : u]�

and

di(↓ ~Γ, y : t ` g : u�) implies ↓ ~Γ, y : t ` g : u� = ~[Γ, y : t ` g : u]�

We wish to show that

↓ ~Γ ` case e of λx :s.f or λy : t.g : u� = ~[Γ ` case e of λx :s.f or λy : t.g : u]�
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We calculate:

↓ ~Γ ` case e of λx :s.f or λy : t.g : u�

CASE − SEM =

↓
(
〈id, ~Γ ` e : s+ t�〉; dist; 〈~Γ, x :s ` f : u�⊕ ~Γ, y : t ` g : u�〉

)
FUNCTOR =

↓ 〈id, ~Γ ` e : s+ t�〉; (↓ dist); ↓ 〈~Γ, x :s ` f : u�⊕ ~Γ, y : t ` g : u�〉

PUSH− ↓ =

〈↓ id, ↓ ~Γ ` e : s+ t�〉; (↓ dist); 〈↓ ~Γ, x :s ` f : u�⊕ ↓ ~Γ, y : t ` g : u�〉

PRESERV E =

〈id, ↓ ~Γ ` e : s+ t�〉; dist; 〈↓ ~Γ, x :s ` f : u�⊕ ↓ ~Γ, y : t ` g : u�〉
)

IH and CASE − IND =

〈id, ~[Γ ` e : s+ t]�〉; dist; 〈~[Γ, x :s ` f : u]�⊕ ~[Γ, y : t ` g : u]�〉
)

CASE − TRANS =

〈id, ~[Γ] ` e′ : [s] + [t]�〉; dist; 〈~[Γ], x : [s] ` f : [u]�⊕ ~[Γ], y : [t] ` g : [u]�〉

CASE − SEM =

~[Γ] ` case e′ of λx : [s].f ′ or λy : [t].g′ : [u]�

CASE − TRANS =

~[Γ ` case e of λx :s.f or λy : t.g : u]�

• Case EQ. Suppose Γ ` e : t is of the form

Γ ` e : t Γ ` f : t

Γ ` e = f : t

EQ-SEM

Γ ` e : t Γ ` f : t

~Γ ` e = f : 2� := δ ◦ 〈~Γ ` e : t�, ~Γ ` f : t�〉

EQ-TRANS

[Γ ` e : t] = [Γ] ` e′ : [t] [Γ ` f : t] = [Γ] ` f ′ : [t]

[Γ ` e = f : 2] := [Γ] ` e′ = f ′ : 2
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Our inductive hypothesis is

di(~Γ ` e : t�) implies ↓ ~Γ ` e : t� = ~[Γ ` e : t]�

and

di(~Γ ` f : t�) implies ↓ ~Γ ` f : t� = ~[Γ ` f : t]�

we wish to show that

↓ ~Γ ` e = f : 2� = ~[Γ ` e = f : 2]�

We calculate:

↓ ~Γ ` e = f : 2�

= EQ− SEM

↓ (〈~Γ ` e : t�, ~Γ ` f : t�〉; δ)

= FUNCTOR

(↓ 〈~Γ ` e : t�, ~Γ ` f : t�〉); (↓ δ)

= PRESERV E

〈↓ ~Γ ` e : t�, ↓ ~Γ ` f : t�〉; δ

= IH and EQ− IND

〈~[Γ ` e : t]�, ~[Γ ` f : t]�〉; δ

= EQ− TRANS

〈~[Γ] ` e′ : [t]�, ~[Γ] ` f ′ : [t]�〉; δ

= EQ− SEM

~[Γ] ` e′ = f ′ : 2�

= EQ− TRANS

~[Γ ` e = f : 2]�
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• Case APP. Suppose Γ ` e : t is of the form

Γ ` f : t→ 2 Γ ` e : t

Γ ` f e : 2

APP-SEM

~Γ ` fe : 2� := 〈~Γ ` f : t→ 2�, ~Γ ` e : t�〉; ev

APP-TRANS

[Γ ` f : t→ 2] = [Γ] ` f ′ : P [t] [Γ ` e : t] = [Γ] ` e′ : [t]

[Γ ` fe : 2] := [Γ] ` e′ mem f ′ : [2]

Our inductive hypotheses are that

di(~Γ ` f : t→ 2�) implies ↓ ~Γ ` f : t→ 2� = ~[Γ ` f : t→ 2]�

di(~Γ ` e : t�) implies ↓ ~Γ ` e : t� = ~[Γ ` e : t]�

We wish to show that

↓ ~Γ ` fe : 2� = ~[Γ ` fe : 2]�

We calculate: ↓ ~Γ ` fe : 2�

= APP − SEM

↓ 〈~Γ ` f : t→ 2�, ~Γ ` e : t�〉; ev

= PUSH− ↓

〈↓ ~Γ ` f : t→ 2�, ↓ ~Γ ` e : t�〉; ↓ ev

= IH

〈~[Γ ` f : t→ 2]�, ~[Γ ` e : t�]〉; ↓ ev

= APP − TRANS

〈~[Γ] ` f ′ : [t]→ [2]�, ~[Γ] ` e′ : [t]�〉; ↓ ev

= APP −HELPER

~[Γ] ` e′ mem f ′ : [2]�

= APP − TRANS

~[Γ ` fe : 2]�

Where APP-HELPER is proved as a separate lemma.
�
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Chapter 4

Relational Foundations for Functorial

Data Migration

The work in this chapter is joint with David Spivak, who developed the original mathematics of the

functorial data model [74]. All proofs in this chapter were proved by David, and all software in this chapter

was developed by me. The definition of FQL as a functional query language is my contribution, and all

theorems, excluding the closure of ∆,Σ,Π under composition, were proved in service of compiling FQL to

relational algebra and other relational languages.

4.1 Introduction

In this chapter we use the tools of category theory to develop a model theory and operator algebra for

database instances that satisfy path equality constraints. In doing so we pick up a long line of work aptly

summarized by Melnik in his thesis [61]. He describes three ways for achieving an “executable model

theory” suitable for large-scale and generic information-integration efforts [62]; we quote these here:

1. One way is to consider schemas, instances, and mappings as syntactic objects represented in a

common meta-theory, e.g., as graphs. This approach has been pursued in almost all prior work on

generic model management. In essence, the operators are specified by means of graph

transformations. As long as the graph transformations do not exploit any knowledge of what the
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graphs actually represent, the operators can be considered truly generic. Unfortunately, there are

very few useful operations that can be defined in such an agnostic fashion. Largely, they are limited

to Subgraph, Copy, and the set operations on graphs.

2. A second way to achieve generic applicability is by using state-based semantics. In this approach, the

properties of the operators are characterized in terms of instances of schemas that are taken as input

and produced as output. Under the assumption that schemas possess well-defined sets of instances,

all key operators can be characterized in a truly generic fashion. Such characterization is applicable

to very complex kinds of schemas and mappings that are used in real applications, including XML

Schemas, XQuery, and SQL. Although state-based characterization does not provide a detailed

implementation blueprint, it is sufficiently specific so that the effect of the operators can be worked

out for concrete languages.

3. A third way for addressing generic applicability is an axiomatic one, e.g., using a category-theoretic

approach. The idea of the approach is to define the operators using axioms that are expressed in

terms of the operators to be defined. Associativity of compose or commutativity of merge are

examples of such axioms. This approach seems to be the most challenging, both in terms of

determining a useful set of axioms and implementing the operators in such a way that the axioms

hold when the operators are applied to concrete languages.

Whereas Melnik proceeds to develop approach 2, and to implement a prototype called Rondo [63], in this

chapter we develop a new approach that combines 1 and 3. In particular, our schemas are categories, and

our operators are those of the functorial data model [74]. Because they are categories, our schemas

generalize graphs yet are significantly more expressive (approach 1); they also form a category, the category

of categories, which is well understood categorically (approach 3). We believe that our combined approach

enjoys the benefits of approaches 1 and 3 while nullifying their disadvantages.

4.1.1 Background

In the functorial data model [74], database schemas are finitely presented categories [9]: directed labeled

multi-graphs with path-equivalence constraints. Database instances are functors from categories/schemas

to the category of sets. By targeting the category of sets, database instances can be stored as relational

tables. Database morphisms are natural transformations (morphisms of functors) from database instances
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to database instances. The database instances and morphisms on a schema S constitute a category,

denoted S–Inst. A morphism M between schemas S and T , which can be generated from a visual

correspondence between graphs, induces three adjoint data migration functors, ΣM : S–Inst→ T–Inst,

ΠM : S–Inst→ T–Inst, and ∆M : T–Inst→ S–Inst. At a high-level, this functorial data model provides

an alternative category-theoretic foundation from which to study problems in information management.

The mathematical foundations of this data model are developed by Spivak in [74] using the language of

category theory, but few specific connections are made to relational database theory.

4.1.2 Related Work

Although labeled mutli-graphs with path equivalence constraints are a common notation for schemas [16],

there has been little work to treat such schemas categorically [35]. Instead, most schema transformation

frameworks treat graphs as relational schemas. For example, in Clio [44], users draw lines connecting

related elements between two schemas-as-graphs, and Clio generates a relational query that implements the

user’s intended data transformation. Behind the scenes, the user’s correspondence is translated into a

formula in the relational language of second-order tuple generating dependencies, from which a query is

generated [32]. As another example, in the Rondo system [63], users are presented with an ad-hoc

collection of operators over schema-as-graphs that they then script together to implement a data

transformation. Although graphs and path-equivalences are used as inputs for both Clio and Rondo, both

Clio and Rondo immediately translate from graphs and path-equivalences into a relational schema before

proceeding further.

In many ways, our work is an extension and improvement of Rosebrugh et al’s initial work on

understanding category presentations as database schemas [35]. In that work, the authors identify the Σ

and Π data migration functors, but they do not identify ∆ as their adjoint. Moreover, they remark that

they were unable to implement Σ and Π using relational algebra, and they do not formalize a query

language or investigate the behavior of the Σ and Π with respect to composition. Our mathematical

development diverges from their subsequent work on “sketches” [52].

4.1.3 Contributions and Outline

In this chapter we make the following contributions:
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1. As described above, the functorial data model [74] is not quite appropriate for many practical

information management tasks. Intuitively, this is because every instance in the pure functorial data

model behaves like a relational database instance where all values are IDs, no values are constants,

and equality is actually isomorphism. So, we extend the functorial data model with “attributes” to

capture meaningful concrete data. The practical result is that our schemas become special kinds of

entity-relationship (ER) diagrams [37], and our instances can be represented as relational tables that

conform to such diagrams. (Sections 2 and 3)

2. We define a simple algebraic query language FQL where every query denotes a data migration

functor in this new extended sense. We show that FQL is closed under composition and how every

query in FQL can be written as three graph correspondences roughly corresponding to projection,

join, and union. Determining whether three arbitrary graph correspondences are FQL queries is

semi-decidable. (Section 4)

3. We provide a translation of FQL into SQL, by which we mean the union of two languages: 1) the

SPCU relational algebra of selection, projection, cartesian product, and union, under its typical set

semantics, and 2) a globally unique ID generator that constructs N + 1-ary tables from N -ary tables

by adding a globally unique ID to each row. This allows us to easily generate SQL programs that

implement FQL. An immediate corollary is that materializing result instances of FQL queries has

polynomial time data complexity. (Section 5)

4. We show that every union of relational conjunctive queries (SPCU) under bag semantics is

expressible in FQL and how to extend FQL to capture every union of relational conjunctive queries

under set semantics. (Section 6)

5. We show that FQL is a schema transformation framework in the sense of Alagic and Bernstein’s

categorical model theory [3] (Section 7).

6. We discuss the relationship between FQL and embedded dependencies (Section 8).

7. We implemented FQL in a prototype visual schema mapping and SQL generation tool in the spirit of

Clio and Rondo, available at wisnesky.net/fql.html. We present a tutorial for the tool in section 9.

8. We conclude with a presentation of a FQL as a language of categorical combinators [24] (Section 10).

All the proofs referenced in this chapter may be found in a tech report [76]. For the remainder of the

introduction we motivate the development of FQL by presenting a detailed comparison of FQL to Clio [44].
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Figure 4.1: Example Data Migration Setting

4.1.4 Motivation

Functorial data migration has many desirable properties that traditional relational approaches such as

employed by Clio [44] do not. We will now elaborate using an example. In the following, we treat Clio as a

representative data migration tool that draws on three distinct areas of existing work: schema mapping

generation from schema correspondences (e.g., [71]), schema mapping semantics (e.g., the data-exchange

chase introduced in [30] that produces universal solutions), and schema mapping operators (e.g., extended

inverses [33]). Other relational data migration tools (e.g., Rondo [63]) also draw on this body of work.

Consider the source entity-relationship (ER) diagram [37] in figure 4.1, with entities being amphibians,

land animals, and water animals. All relationships are of the form “is a”. The ER diagram defines a

relational schema consisting of tables Amphibian, Land, and Water, each with a primary key column of the

same name. Each table has a name column, and Amphibian has foreign key columns isL (to Land), and isW

(to Water). The target ER diagram in figure 1 adds an additional entity, Animal, and adds foreign keys to

Animal from tables Water (Wis) and Land (Lis). The diagram also contains an equation between paths of

foreign keys, stating that each Amphibian is a single Animal, even though each Amphibian is both a Land

animal and a Water animal. Let F denote the obvious inclusion mapping from the source schema to the

target schema. Given such an F , schema mapping tools such as FQL and Clio will emit queries, usually in

a variety of languages, for migrating source instances to the target schema. We will now contrast the

behavior of Clio and FQL in this data migration setting.

Clio begins by translating the foreign key constraints into tuple-generating dependencies (TGDs). It uses

the TGDs from each schema to compute maximal “connections” (also called “logical relations”) among the

tables within the schema, and then it uses the input mapping to compute a set of source-to-target TGDs
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that relate source logical relations to target logical relations [71]. Given an input instance I, Clio solves the

output TGDs by chasing with them on I [30]. The output instance clio(I) will be a “universal solution” to

(F, I), meaning that for any other solution J , there will be a homomorphism clio(I)→ J [30].

FQL begins similarly. It treats the ER diagram as a graph, closes the graph under composition of paths,

and then quotients this free graph by the path equalities. Then, from the mapping F : S → T , FQL

computes three data migration operations, ΣF : S–Inst→ T–Inst, ΠF : S–Inst→ T–Inst, and

∆F : T–Inst→ S–Inst. Given an input instance I, ΣF (I) will be an initial solution to (I, F ), meaning

that for any other solution J , there will be a unique homomorphism ΣF (I)→ J . Dually, ΠF (I) will be a

terminal solution, meaning that there will be a unique homomorphism J → ΠF (I). The ∆F operation is

the crucial reverse data migration operation identified by Bernstein and Alagic in their categorical model

theory [3], and ΣF and ΠF are ∆F ’s unique left and right “adjoints”, or weak inverses [9].

FQL has the following advantages over Clio in the data migration setting in figure 4.1:

• As path equality constraints such as in figure 4.1 translate into equality-generating dependencies

(EGDs), not TGDs, Clio ignores them. Hence, Clio computes 9 animals in figure 1, instead of the 7

animals computed by FQL’s Σ operator. Intuitively, Clio computes 9 animals because the path

Amphibian.isL.Lis, when applied to “a”, is instantiated by a different value than the path

Amphibian.isW.Wis when applied to the same “a”. FQL correctly identifies the two values, resulting in

7 animals, via the path equation.

• FQL’s initial solution is stronger than Clio’s universal solution because the mediating homomorphism

is unique.

• FQL’s ∆F , ΣF , and ΠF operations are unique. In Clio, many data migration queries can be

generated from a schema mapping F .

• FQL’s ΣF is ∆F ’s left adjoint, and ΠF is ∆F ’s right adjoint. Adjoints are a weaker notion of inverse

than the quasi-inverses of [33], but unlike quasi-inverses, FQL’s ΣF and ΠF always exist. When F is

“fully-faithful” [9], ΣF is the quasi-inverse of ∆F .

• Clio lacks an operation corresponding to Π. Although Σ often captures the traditional semantics of

data-migration, Π provides a significantly leap in expressive power: without Π, FQL would not be

able to implement the SPCU relational algebra.

Of course, Clio has advantages over FQL. For example, FQL cannot currently handle nested data.
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4.2 Categorical Data

In this section we define the original signatures and instances of Spivak’s [74], as well as “typed signatures”

and “typed instances”, which are our extension of Spivak’s [74] to attributes. The basic idea is that

signatures are stylized ER diagrams that denote categories, and our database instances can be represented

as instances of such ER diagrams, and vice versa (up to natural isomorphism).

4.2.1 Signatures

The functorial data model [74] uses directed labeled multi-graphs and path equalities for signatures. A path

p is defined inductively as:

p ::= node | p.edge

A signature S is a finite presentation of a category. That is, a signature S is a triple S := (N,E,C) where

N is a finite set of nodes, E is a finite set of labeled directed edges , and C a finite set of path equivalences.

For example,

Emp
•

worksIn //

manager
��

Dept
•

secretary
oo

Emp.manager.worksIn = Emp.worksIn Dept.secretary.worksIn = Dept

Here we see a signature S with two vertices and three arrows, and two path equivalence statements. This

information generates a category ~S�: the free category on the graph, modulo the equivalence relation

induced by the path equivalences. The category ~S� is the schema for S, and database instances over ~S�

are functors ~S�→ Set. Every path p : X → Y in a signature S denotes a morphism ~p� : ~X�→ ~Y � in

~S�. Given two paths p1, p2 in a signature S, we say that they are equivalent, written p1 � p2 if ~p1� and

~p2� are the same morphism in ~S�. Two signatures S and T are isomorphic, written S � T , if they denote

isomorphic schema, i.e., if the categories they generate are isomorphic.
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4.2.2 Cyclic Signatures

If a signature contains a loop, it may or may not denote a category with infinitely many morphisms.

Hence, some constructions over signatures may not computable. Testing if two paths in a signature are

equivalent is known as the word problem for categories. The word problem can be semi-decided using the

“completion without failure” extension [6] of the Knuth-Bendix algorithm. This algorithm first attempts to

construct a strongly normalizing re-write system based on the path equalities; if it succeeds, it yields a

linear time decision procedure for the word problem [48]. If a signature denotes a finite category, the

Carmody-Walters algorithm [18] will compute its denotation. The algorithm computes left Kan extensions

and can be used for many other purposes in computational category theory [35]. In fact, every Σ functor

arises as a left Kan extension, and vice versa.

4.2.3 Instances

Let S be a signature. A ~S�-instance is a functor from ~S� to the category of sets. We will represent

instances as relational tables using the following binary format:

• To each node N corresponds an “identity” or “entity” table named N , a reflexive table with tuples of

the form (x, x). We can specify this using first-order logic:

∀xy.N(x, y)⇒ x = y. (4.1)

The entries in these tables are called IDs or keys, and for the purposes of this chapter we require

them to be globally unique. We call this the globally unique key assumption.

• To each edge e : N1 → N2 corresponds a “link” table e between identity tables N1 and N2. The

axioms below merely say that every edge e : N1 → N2 designates a total function N1 → N2:

∀xy. e(x, y)⇒ N1(x, x)

∀xy. e(x, y)⇒ N2(y, y)

∀xyz. e(x, y) ∧ e(x, z)⇒ y = z

∀x. N1(x, x)⇒ ∃y.e(x, y)

(4.2)

90



An example instance of our employees schema is:

Emp

Emp Emp

101 101

102 102

103 103

Dept

Dept Dept

q10 q10

x02 x02

manager

Emp Emp

101 103

102 102

103 103

worksIn

Emp Dept

101 q10

102 q10

103 x02

secretary

Dept Emp

x02 102

q10 101

To save space, we will sometimes present instances in a “joined” format:

Emp

Emp manager worksIn

101 103 q10

102 102 q10

103 103 x02

Dept

Dept secretary

q10 102

x02 101

The natural notion of equality of instances is isomorphism. In particular, the actual constants in the

above tables should be considered meaningless IDs.

4.2.4 Attributes

Signatures and instances, as defined above, do not have quite enough structure to be useful in practice. At

a practical level, we usually need fixed atomic domains such as String and Nat to store actual data. Hence,

in this section we extend the functorial data model with attributes.

Let S be a signature. A typing Γ for S is a mapping from each node N of S to a (possibly empty) set of

attribute names and associated base types (Nat, String, etc), written Γ(N). We call a pairing of a

signature and a typing a typed signature. Borrowing from ER-diagram notation, we will write attributes as

open circles. For example, we might enrich our previous signature with a typing as follows:

Emp
•

worksIn //

manager
��

Dept
•

secretary
oo

FName◦ LName◦ DName◦

Emp.manager.worksIn = Emp.worksIn Dept.secretary.worksIn = Dept

91



Importantly, path expressions may not refer to attributes; they may only refer to nodes and directed edges.

The meaning of Γ is a triple ~Γ� := (A, i, γ), where A is a discrete category consisting of the attributes of

Γ, i is a functor from A to ~S� mapping each attribute to its corresponding node, and γ is a functor from

A to Set, mapping each attribute to its domain (e.g., the set of strings, the set of natural numbers):

A
i //

γ
!!

~S�

Set

4.2.5 Typed Instances

Let S be a signature and Γ a typing such that ~Γ� = (A, i, γ). A typed instance I is a pair (I ′, δ) where

I ′ : ~S�→ Set is an (untyped) instance together with a natural transformation δ : I ′ ◦ i⇒ γ. Intuitively, δ

associates an appropriately typed constant (e.g., a string) to each globally unique ID in I ′:

A
i //

γ
!!

δ⇐

~S�

I′||
Set

We represent the δ-part of a typed instance as a set of binary tables as follows:

• To each node table N and attribute A with type t in Γ(N) corresponds a binary “attribute” table

mapping the domain of N to values of type t.

In our employees example, we might add the following:

FName

Emp String

101 Alan

102 Andrey

103 Camille

LName

Emp String

101 Turing

102 Markov

103 Jordan

DName

Dept String

x02 Math

q10 CS

Typed instances form a category, and two instances are equivalent, written �, when they are isomorphic

objects in this category. Isomorphism of typed instances captures our expected notion of equality on typed

instances, where the “structure parts” are compared for isomorphism and the “attribute parts” are

compared for equality under such an isomorphism.
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4.3 Functorial Data Migration

In this section we define the original signature morphisms and data migration functors of Spivak’s [74], as

well as “typed signature morphisms” and “typed data migration functors”, which are our extension of

Spivak’s [74] to attributes. The basic idea is that associated with a sufficiently well-behaved mapping

between signatures F : S → T is a data transformation ∆F : T -Inst → S-Inst and left and right adjoints

ΣF ,ΠF : S-Inst → T -Inst. See chapter 1 for a formal definition of adjoint.

4.3.1 Signature Morphisms

Let C and D be signatures. A signature morphism F : C → D is a mapping that takes vertices in C to

vertices in D and arrows in C to paths in D; in so doing, it must respect arrow sources, arrow targets, and

path equivalences. In other words, if p1 � p2 is a path equivalence in C, then F (p1) � F (p2) is a path

equivalence in D. Each signature morphism F : C → D determines a unique schema morphism

~F� : ~C�→ ~D� in the obvious way. Two signature morphisms F1 : C → D and F2 : C → D are equivalent,

written F1 � F2, if they denote isomorphic functors. Below is an example of a signature morphism.

C :=

A1•

N1•

BB

��

N2•

]]

��A2•

F−−−→

B1•

N•

BB

��
B2•

=: D

In the above example, the nodes N1 and N2 are mapped to N, the two morphisms to A1 are mapped to the

morphism to B1, and the two morphisms to A2 are mapped to the morphism to B2.
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4.3.2 Typed Signature Morphisms

Intuitively, signature morphisms are extended to typed signatures by providing an additional mapping

between attributes. For example, we might have Name and Age attributes in our source and target typings:

Name◦

A1•

N1•

??

��

N2•

__

��A2•

Age
◦

−−→

Name◦

B1•

N•

@@

�� B2•

Age
◦

In the above, we map Name to Name and Age to Age. More complicated mappings of attributes are also

possible, as we will see in the next section.

Formally, let S be a signature and ~Γ� = (A, i, γ) a typing for S. Let S′ be a signature and

~Γ′� = (A′, i′, γ′) a typing for S′. A typed signature morphism from (S,Γ) to (S’,Γ′) consists of a signature

morphism F : S → S′ and a functor G : A→ A′ such that the following diagram commutes:

A
i //

γ
!!

G

��

~S�

~F �

��

Set

A′

γ′
==

i′
// ~S′�

4.3.3 Data Migration Functors

Each signature morphism F : C → D is associated with three adjoint data migration functors, ∆F ,ΣF , and

ΠF , which migrate instance data on D to instance data on C and vice versa. A summary is given here:
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Data migration functors induced by a translation F : C → D

Name Symbol Type Idea of definition Relational

Pullback ∆F ∆F : D–Inst→ C–Inst Composition with F Project

Right Pushforward ΠF ΠF : C–Inst→ D–Inst Right adjoint to ∆F Join

Left Pushforward ΣF ΣF : C–Inst→ D–Inst Left adjoint to ∆F Union

Definition 1 (Data Migration Functors). Let F : C → D be a functor. We will define a functor

∆F : D–Inst→ C–Inst; that is, given a D-instance I : D → Set we will construct a C-instance ∆F (I).

This is obtained simply by composing the functors I and F to get

∆F (I) := I ◦ F : C → Set C F //

∆F I

66D I // Set

Then, ΣF : C–Inst→ D–Inst is defined as the left adjoint to ∆F , and ΠF : C–Inst→ D–Inst is defined as

the right adjoint to ∆F .

Data migration functors extend to typed data migration functors over typed instances in a natural way. We

will use typed signatures and instances as we examine each data migration functor in turn below.

4.3.4 ∆

Consider the following signature morphism F : C → D:

C :=

Name◦

Salary
◦

N1• N2•

Age
◦

F−−−→

Name◦

Salary
◦

N•

Age
◦

=: D

Even though our translation F points forwards (from C to D), our migration functor ∆F points

“backwards” (from D-instances to C-instances). Consider the instance J , on schema D, defined by
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J :=

N

ID Name Age Salary

1 Bob 20 $250

2 Sue 20 $300

3 Alice 30 $100

∆F (J) splits up the columns of table N according to the translation F , resulting in

I :=

N1

ID Name Salary

1 Bob $250

2 Sue $300

3 Alice $100

N2

ID Age

a 20

b 20

c 30

Because of the globally unique ID requirement, the IDs of the two tables N1 and N2 must be disjoint. Note

that ∆ never changes the number of IDs associated with a node. For example, table N1 is ostensibly the

“projection” of Age, yet has two rows with age 20.

4.3.5 Π

Consider the morphism F : C → D and C-instance I defined in the previous section. Our migration
functor ΠF points in the same direction as F : it takes C-instances to D-instances. In general, Π will take
the join of tables. We can Π along any typed signature morphism whose attribute mapping is a bijection.
Continuing with our example, we find that ΠF (I) will take the cartesian product of N1 and N2:

N

ID Name Age Salary

1 Alice 20 $100

2 Alice 20 $100

3 Alice 30 $100

4 Bob 20 $250

5 Bob 20 $250

6 Bob 30 $250

7 Sue 20 $300

8 Sue 20 $300

9 Sue 30 $300
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This example illustrates that adjoints are not, in general, inverses. Intuitively, the above instance is a

product rather than a join because in there is no path between N1 and N2.

Remark. When the target schema is infinite, on finite inputs Π may create uncountably infinite result

instances. Consider the unique signature morphism

C = s• F−−−→
s•

f
�� =: D.

Here ~D� has arrows {fn | n ∈ N} so it is infinite. Given the two-element instance I : C → Set with

I(s) = {Alice,Bob}, the rowset in the right pushforward ΠF (I) is the (uncountable) set of infinite streams

in {Alice,Bob}, i.e. ΠF (I)(s) = I(s)N.

4.3.6 Σ

For the purposes of this chapter we will define ΣF only for functors F that are discrete op-fibrations.

Inasmuch as Σ can be thought of as computing unions, functors that are discrete op-fibrations intuitively

express the idea that all such unions are over “union compatible” tables.

Definition 2 (Discrete op-fibration). A functor F : C → D is called a discrete op-fibration if, for every

object c ∈ Ob(C) and every arrow g : d→ d′ in D with F (c) = d, there exists a unique arrow ḡ : c→ c′ in C

such that F (ḡ) = g.

Consider the following discrete op-fibration, which maps as to A, bs to B, cs to C, gs to G, and hs to H:

C :=

b1• a1• h1 //g1oo c1•

b2• a2•
g2oo h2 // c2•

a3•
g3

hh

h3

((

c3•

c4•

F

��

D := B• A• H //Goo C•
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Intuitively, F : C → D is a discrete op-fibration if “the columns in each table T of D are exactly matched by

the columns in each table in C mapping to T .” Since a1, a2, a3 7→ A, they must have the same column

structure and they do: each has two non-ID columns. Similarly each of the bi and each of the ci have no

non-ID columns, just like their images in D.

To explain the action of ΣF , consider the following instance:

a1

ID g1 h1

11 7 1

a2

ID g2 h2

16 9 3

15 10 4

14 8 4

a3

ID g3 h3

13 10 17

12 9 18

b1

ID

7

6

b2

ID

10

9

8

c1

ID

2

1

c2

ID

4

3

c3

ID

5

c4

ID

18

17

The result of ΣF is:

A

ID G H

16 9 3

15 10 4

14 8 4

13 10 17

12 9 18

11 7 1

B

ID

10

9

8

7

6

C

ID

18

17

5

4

3

2

1

By counting the number of rows it is easy to see that Σ computes union: A has 6 = 1 + 3 + 2 rows, B has

5 = 3 + 2 rows, C has 7 = 2 + 2 + 1 + 2 rows.

We can Σ along any typed signature morphism for which the attribute mapping is also “union compatible

in the sense of Codd”: string attributes must map to string attributes, etc. Intuitively, the attribute data

will be unioned together in exactly the same way as ID data.

Technically, Σ is a disjoint union. However, by requiring our IDs to be globally unique, we can use regular

union to implement disjoint union: the globally unique ID assumption ensures that for all distinct tables

X,Y in a functorial instance, |X ∪ Y | = |X|+ |Y |
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Remark. In this chapter we require that signature morphisms used with Σ be discrete op-fibrations.

However, it is possible to define Σ for arbitrary, un-restricted signature morphisms, at the following cost:

• Unrestricted Σs may not exist for typed instances.

• An unrestricted variant of FQL will probably not be closed under composition.

• To implement unrestricted Σ we may be required to synthesize new IDs, and termination of this

process is semi-decidable.

4.4 FQL

The goal of this section is to define and study an algebraic query language where every query denotes a

composition of data migration functors. Our syntax for queries is designed to build-in the syntactic

restrictions discussion in the previous section and to provide a convenient normal form.

Definition 3 (FQL Query). A FQL query Q from S to T , denoted Q : S { T is a triple of typed signature

morphisms (F,G,H):

S
F←− S′ G−→ S′′

H−→ T

such that

• ~S�, ~S′�, ~S′′�, and ~T� are finite

• G’s attribute mapping is a bijection

• H is a discrete op-fibration with a union compatible attribute mapping

Semantically, the query Q : S { T corresponds to a functor ~Q� : ~S�–Inst→ ~T�–Inst given as follows:

~Q� := Σ~H�Π~G�∆~F � : ~S�–Inst→ ~T�–Inst

By choosing two of F , G, and H to be the identity mapping, we can recover ∆, Σ, and Π. However,

grouping ∆,Σ, and Π together like this formalizes a query as a disjoint union of a join of a projection.

(Interestingly, in the SPCU relational algebra, the order of join and projection are swapped: the normal

form is that of unions of projections of joins.)
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Theorem 1 (Closure under composition). Given any FQL queries f : S { X and g : X { T , we can

compute an FQL query g · f : S { T such that

~g · f� � ~g� ◦ ~f�

Example

We now present an example FQL program using FQL’s concrete syntax (this example is built in to the

FQL IDE as the “FOIL” example). The basic idea is that starting from a schema with four nodes, a, b, c, d,

we can compute an output instance with (|a|+ |b|)× (|c|+ |d|) rows by first unioning (with Σ) and then

taking products (with Π). By the closure under composition theorem, we know that we may instead first

take products and then union, and compute the same instance with an equivalent |a| × |c| + |a| × |d| +

|b| × |c| + |b| × |d| rows.

schema Begin = {

nodes

a,b,c,d;

attributes; arrows; equations;

}

schema Added = {

nodes

aPLUSb,cPLUSd;

attributes; arrows; equations;

}

schema Multiplied = {

nodes

aPLUSbTIMEScPLUSd;

attributes; arrows; equations;

}
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mapping F = {

nodes

a -> aPLUSb,

b -> aPLUSb,

c -> cPLUSd,

d -> cPLUSd;

attributes;

arrows;

} : Begin -> Added

mapping G = {

nodes

aPLUSb -> aPLUSbTIMEScPLUSd,

cPLUSd -> aPLUSbTIMEScPLUSd;

attributes;

arrows;

} : Added -> Multiplied

// Below, put any number of elements into a,b,c,d.

// The output should have (a+b)*(c+d) many elements

instance I = {

nodes

a -> {1},

b -> {1,2},

c -> {1,2},

d -> {1,2,3};

attributes; arrows;

}: Begin

instance J = sigma F I
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instance K = pi G J

mapping idB = id Begin

mapping idA = id Added

mapping idM = id Multiplied

query p = delta idB pi idB sigma F

query q = delta idA pi G sigma idM

query res = (p then q)

instance resinst = eval res I

4.5 SQL Generation

In this section we define SQL generation algorithms for ∆, Σ, and Π. Let F : S → T be a typed signature

morphism.

4.5.1 ∆

Theorem 2. We can compute a SQL program [F ]∆ : T → S such that for every T -instance I ∈ T–Inst, we

have ∆F (I) � [F ]∆(I).

We sketch the algorithm as follows. We are given a T -instance I, presented as a set of binary functions,

and are tasked with creating the S-instance ∆F (I). We describe the result of ∆F (I) on each table in the

result instance by examining the schema S:

• for each node N in S, the binary table ∆F (N) is the binary table IF (N)

• for each attribute A in S, the binary table ∆F (A) is the binary table IF (A)

• Each edge E : X → Y in S maps to a path F (E) : FX → FY in T . We compose the binary edges

tables making up the path F (E), and that becomes the binary table ∆F (E).

The SQL generation algorithm for ∆ sketched above does not maintain the globally unique ID

requirement. For example, ∆ can copy tables. Hence we must also generate SQL to restore this invariant.
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4.5.2 Σ

Theorem 3. Suppose F is a discrete op-fibration and has a union compatible attribute mapping. Then we

can compute a SQL program [F ]Σ : S → T such that for every S-instance I ∈ S–Inst, we have

ΣF (I) � [F ]Σ(I).

We sketch the algorithm as follows. We are given a S-instance I, presented as a set of binary functions,

and are tasked with creating the T -instance ΣF (I). We describe the result of ΣF (I) on each table in the

result instance by examining the schema T :

• for each node N in T , the binary table ∆F (N) is the union of the binary node tables in I that map

to N via F .

• for each attribute A in T , the binary table ∆F (A) is the union of the binary attribute tables in I that

map to A via F .

• Let E : X → Y be an edge in T . We know that for each c ∈ F−1(X) there is at least one path pc in

C such that F (pc) � e. Compose pc to a single binary table, and define ΣF (E) to be the union over

all such c. The choice of pc will not matter.

4.5.3 Π

Theorem 4. Suppose ~S� and ~T� are finite, and F has a surjective attribute mapping. Then we can

compute a SQL program [F ]Π : S → T such that for every S-instance I ∈ S–Inst, we have ΠF (I) � [F ]Π(I).

The algorithm for ΠF is more complicated than for ∆F and ΣF . In particular, its construction makes use

of comma categories, which we have not yet defined, as well as “limit tables”, which are a sort of “join all”.

We define these now.

Let B be a typed signature and H a typed B-instance. The limit table limB is computed as follows. First,

take the cartesian product of every binary reflexive node table in B, and naturally join the attribute tables

of B. Then, for each edge e : n1 → n2 filter the table by n1 = n2. This filtered table is the limit table limB .

Let S : A→ C and T : B → C be functors. The comma category (S ↓ T ) has for objects triples (α, β, f),

with α an object in A, β and object in B, and f : S(α)→ T (β) a morphism in C. The morphisms from

(α, β, f) to (α′, β′, f ′) are all the pairs (g, h) where g : α→ α′ and h : B → B′ are morphisms in A and B

respectively such that T (h) ◦ f = f ′ ◦ S(g).
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The algorithm for ΠF proceeds as follows. First, for every object d ∈ T we consider the comma category

Bd := (d ↓ F ) and its projection functor qd : (d ↓ F )→ C. (Here we treat d as a functor from the empty

category). Let Hd := I ◦ qd : Bd → Set, constructed by generating SQL for ∆(I). We say that the limit

table for d is limBdHd, as described above. Now we can describe the target tables in T :

• for each node N in T , generate globally unique IDs for each row in the limit table for N . These

GUIDs are ΠF (N).

• for each attribute A : X → type in T , ΠF (A) will be a projection from the limit table for X.

• for each edge E : X → Y in T , ΠF (E) will be a map from X to Y obtained by joining the limit

tables for X and Y on columns which “factor through” E.

Remark 1. Our SQL generation algorithms for ∆ and Σ work even when ~S� and ~T� are infinite, but

this is not the case for Π. To recover Π on infinite schemas, it is possible to target a category besides Set,

provided that category is complete and co-complete. For example, it is possible to store our data not as

relations, but as programs in the Turing-complete language PCF [74] [69].

Remark 2. Our SQL generation algorithms for ∆ and Σ generate compositions along paths and unions

thereof. As such, there is little room for optimization at the level of SQL generation. However, we have

found that in practice, on even trivial examples, some basic SQL query planning optimizations, such as

ordering joins based on the size of input relations, are required to get adequate performance. Indeed,

running our generated SQL on a real-world SQL engine such as mySQL results in order of magnitude

speed-ups compared to the naive SQL implementation built in to the FQL IDE. Our SQL generation

strategy for Π does (sometimes) result in redundant computation, and can be optimized along the lines

proposed for right Kan-extensions in [35].

4.6 SQL in FQL

Because FQL operates on functorial instances, it is not possible to implement many relational operations

directly in FQL. However, we can always “encode” arbitrary relational databases as functorial instances.

Relational signatures are encoded as “pointed” signatures with a single attribute that can intuitively be

thought of as the active domain. For example, the signature for a relational schema with two relations

R(c1, . . . , cn) and R′(c′1, . . . , c′n′) has the following form:
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R•

c1
++

···

cn

��

R′•c′
n′

��
···

c′1ssD•

A◦

We might expect that the c1, . . . , cn would be attributes of node R, and hence there would be no node D,

but that doesn’t work: attributes may not be joined on. Instead, we must think of each column of R as a

mapping from R’s domain to IDs in D, and A as a mapping from IDs in D to constants. We will write [R]

for the encoding of a relational schema R and [I] for the encoding of a relational R-instance I.

4.6.1 Conjunctive queries (Bags)

FQL can implement relational conjunctive (SPC/select-from-where) queries under bag semantics directly

using the above encoding. In what follows we will omit the attribute A from the diagrams. For simplicity,

we will assume the minimal number of tables required to illustrate the construction. We may express the

(bag) operations π, σ,× as follows:

• Let R be a table. We can express πi1,...,ikR using the pullback ∆F , where F is the following functor

πR•

i1

��
··· ik

��D•

F−−−→

R•

c1

''

c2

��
··· cn

��D•

• Let R be a table. We can express σi=jR using ∆FΠF , where F is the following functor:

R•

c1

**

··· ci

��
··· cj ···

��
cn

ttD•

F−−−→

σR•

s

''

c1

��
··· cn

��D•

Here F (ci) = F (cj) = s. If we wanted the more economical query in which the column s is not

duplicated, we would use ΠF instead of ∆FΠF .
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• Let R and R′ be tables. We can express R×R′ as the right pushforward ΠF , where F is the

following functor:

R•

c1
++

···

cn

��

R′•c′
n′

��
···

c′1ssD•

F−−−→

R×R′•

c1

**

··· cn

��
··· c′1 ···

��
c′
n′

ttD•

Theorem 5 (Conjunctive RA in FQL (bags)). Let R be a relational schema, and I an R-instance. For

every conjunctive (SPC) query q under bag semantics we can compute a FQL program [q] such that

[q(I)] � [q]([I]).

4.6.2 Conjunctive Queries (Sets)

The encoding strategy described above fails for relational conjunctive queries under their set-theoretic
semantics. For example, consider a simple two column relational table R, its encoded FQL instance [R],
and an attempt to project off col1 using ∆:

R

col1 col2

x y

x z

[R]

ID col1 col2

0 x y

1 x z

∆[R]

ID col1

0 x

1 x

This answer is incorrect under projection’s set-theoretic semantics because it has the wrong number of
rows. However, it is possible to extend FQL with an operation, relationalizeT : T -Inst → T -Inst, such
that FQL+relationalize can implement every relational conjunctive query under normal set-theoretic
semantics. Intuitively, relationalizeT converts a T -instance to a smaller T -instance by equating IDs that
cannot be distinguished. The relationalization of the above instance would be

relationalize(∆[R])

ID col1

0 x

which is correct for the set-theoretic semantics. We have the the following theorem:

Theorem 6 (Conjunctive RA in FQL (sets)). Let R be a relational schema, and I an R-instance. For

every conjunctive (SPC) query q under set semantics we can compute a FQL program [q] such that

[q(I)] � relationalizeT ([q]([I])).

Provided T is obtained from a relational schema (i.e., has the pointed form described in this section),

relationalizeT can easily be implemented using the same SPCU+GUIDgen operations as ∆,Σ,Π.
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4.6.3 Union

The bag union of two relational instances R1 and R2 can be expressed using disjoint union as R1 +R2;

similarly, the set union can be expressed as relationalize(R1 +R2). Hence, given the results of the

previous sections, to translate the SPCU relational algebra to FQL it is sufficient to implement disjoint

union using FQL. However, because FQL queries are unary and union is binary, implementing disjoint

union using FQL requires encoding two C-instances as an instance on the co-product schema C + C.

For any two signatures S, T , the co-product signature S + T is formed by taking the disjoint union of S, T ’s

nodes, attributes, edges, and equations. An S instance can be injected into (S + T )–Inst using

ΣF : S–Inst→ (S + T )–Inst, where F : S → S + T is the canonical inclusion map. We have the following

theorem:

Theorem 7 (Co-products in FQL). Let C be a signature and I : C–Inst and J : C–Inst be instances.

Then the co-product instance I + J : C–Inst is expressible as ΣF (K) : C–Inst, where F : C +C → C is the

“fold” signature morphism taking each copy of C in the co-product schema C + C to C, and

K : (C + C)–Inst is formed by injecting I : C–Inst and J : C–Inst into (C + C)–Inst.

4.7 Schema Transformation

In this section we prove that the functorial data model is a schema transformation framework in the sense

of Alagic and Bernstein [3] [10]. In fact, their notion is essentially equivalent to that of institution [40].

It is easy to describe basic functorial data migration using Alagic and Bernstein’s categorical model

theory [3]. However, there is a fundamental difference in terminology. In this chapter, we use “signature”

for a finitely presented category, and “schema” for the potentially infinite category it denotes. Alagic and

Bernstein leave “signature” undefined, and use “schema” for a pair of a signature and a set of sentences in

some logical formalism. Hence, every schema in our sense can be represented as a potentially infinite

schema in their sense (its presentation), and every signature in our sense can be represented as a finite

schema in their sense (its finite presentation). We consider path-equivalences to be part of our signatures,

so our instances obey path-equivalences by definition; in their system, path-equivalences are not part of

signatures and a separate satisfaction relation |=S characterizes the path-equivalences that hold in an

S-instance. In the following definition, we use “signature” and “schema” in their sense. Let L be a logical

formalism such as first-order logic. Then
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Definition 4. A schema transformation framework is a tuple (Sig, Sig0, Sen,Db, |=) such that

1. Sig is the category of signatures together with their morphisms, and Sig has an initial object Sig0.

2. Sen : Sig→ Set is a functor such that Sen(Sig) is the set of all L-sentences over the signature Sig.

3. Db : Sig→ Catop is a functor sending each signature Sig to the category Db(Sig) of Sig-instances

and their morphisms.

4. For each signature Sig, the satisfaction relation |=Sig ⊂ |Db(Sig)| × Sen(Sig) is such that for each

schema signature morphism φ : SigA → SigB, the following integrity requirement holds for each SigB

database dB and each sentence e ∈ Sen(SigA) :

db |=SigB Sen(φ)(e) iff Db(φ)(db) |=SigA e

Theorem 8. The functorial data model is a schema transformation framework.

We use the following definitions:

1. Sig is a the category of finitely presented freely generated categories, and Sig0 is the empty category.

2. Sen(Sig) is the set of all equations over the signature Sig.

3. Db : Sig→ Catop is ∆.

4. I |= p1 � p2 is defined in the intuitive way.

4.8 FQL and EDs

In this section we discuss with some in-progress work about implementing FQL using embedded

dependencies (EDs) [2]. We begin by noting some technical complications that arise when relating FQL to

EDs. The first is that untyped instances in FQL correspond to relational instances that are made up

entirely of meaningless globally unique IDs. If we think of FQL IDs as labelled nulls [27], then every

natural transformation is a homomorphism, and vice versa. However, the correct notion of equivalence to

use for untyped FQL instances is isomorphism, not homomorphic equivalence (instances I and J are

homomorphically equivalent when there are homomorphisms h : I → J and h′ : J → I, but h and h′ need

not be inverses).
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The second complication is that the constraints required to hold of functorial instances, e.g., (4.1)(4.2), are

not all EDs. In particular, the “globally unique ID assumption” must be stated using negation:

∀x,N1(x, x)→ ¬N2(x, x) ∧ ¬N3(x, x) ∧ . . .

However, the unique ID assumption is an artifact of our SQL generation strategy, rather than a

requirement of functorial data migration itself. In particular, the unique ID assumptions lets us use

relational union to implement disjoint union.

Bearing these two complications in mind, we conjecture the following: every un-restricted Σ can be

implemented as the initial solution to a set of EDs; every Π can be implemented as the terminal solution to

a set of EDs; and every ∆ can be implemented as the initial and terminal solution to a set of EDs. We now

explain this terminology. If ϕ is a set of EDs and I an FQL instance, a solution to (ϕ, I) is an instance U

such that U |= φ and there exists a natural transformation h : I → U . U is initial if, for every other

solution U ′ such that h′ : I → U ′, there exists a unique natural transformation f : U → U ′ such that

h′ = h; f . Dually, U is terminal if it has a unique commuting natural transformation h : U ′ → U for every

other solution U ′.

We implement ∆,Σ,Π with EDs as follows. Let F : C → D be a signature morphism. We define the

disjoint union signature C +D by taking the disjoint union of C and D’s nodes, attributes, arrows, and

equations. Then we define the signatures C ?Σ D,C ?Π D,C ?∆ D by adding additional paths and

equations to C +D:

• the arrows of C ?Π D contain, for each each node c ∈ C, an arrow mc : F (c)→ c; the equations of

C ?Π D contain, for every arrow f : c→ c′ in C, the equation F (f);mc′ = mc; f , and for every

attribute a from c in C, the equation F (a) = mc; a.

• the arrows of C ?Σ D contain, for each each node c ∈ C, an arrow lc : c→ F (c); the equations of

C ?Σ D contain, for every arrow f : c→ c′ in C, the equation lc;F (f) = f ; lc′ , and for every attribute

a from c in C, the equation a = lc;F (a).

• C ?∆ D contains the lc and mc described above, the equations described above, and the additional

equations mc; lc = id and lc;mc = id.

The set of EDs that implements ∆,Σ,Π is then simply the functorality EDs from (4.1)(4.2) and the path

equality constraints of C ?D, which are easy to express as EDs. Operationally, we start with a C (resp, D)
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instance I, we compute an initial or terminal C ? D solution IJ , and the desired D (resp, C) instance J

will be a subset of the tables of IJ .

We have modified the FQL compiler to emit the EDs described above, and to solve them using the

standard chase and the core chase [31]. We find that, on every example we have tried, the standard chase

correctly computes Σ and ∆ data migrations. The core chase does not, because the core of a chased

solution I will only be homomorphically equivalent to I, not isomorphic to I, as we require.

Running the chase on the EDs generated for Π always results in an empty target instance, because the

“existential force” of the EDs for Π is target-to-source. A category-theoretic understanding is that for our

purposes, the standard chase computs initial instances, whereas our Π migrations are terminal instances.

We are unaware of any traditional relational algorithm that implements terminal solutions to EDs.

However, because we can implement Π using SPC+keygen, it is likely that Π can be implemented with a

different set of EDs than those described in this section.

4.9 FQL Tutorial

In this section we present a tutorial about FQL, available at wisnesky.net/fql.html. The FQL compiler emits

SQL (technically, PSM) code that can be run on any RDBMS. The FQL compiler is hosted inside of an

integrated development environment, the FQL IDE. The FQL IDE is an open-source Java program that

provides a code editor for and visual representation of FQL programs. A screen shot of the initial screen of

the FQL IDE is shown below.
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The FQL IDE is a multi-tabbed text file editor that supports the usual operations of saving, opening,

copy-paste, etc. Associated with each editor is a “compiler response” text area that displays the SQL

output of the FQL compiler (invoked with the “compile” button), or, if compilation fails, an error message.

The built-in FQL examples can be loaded by selecting them from the “load example” combo box in the

upper-right. In the rest of this tutorial we will refer to these examples.

4.9.1 FQL Syntax

An FQL program is an ordered list of named declarations. Each declaration defines either a schema, an

instance, a mapping, or a query. We now describe each of these concepts in turn. Comments in FQL are

Java style, either “//” or “/* */”.

Schemas

Select the “employees” examples. This will create a new tab containing the following FQL code:

schema S = { nodes Employee, Department;

attributes

name : Department -> string,

first : Employee -> string,

last : Employee -> string;

arrows

manager : Employee -> Employee,

worksIn : Employee -> Department,

secretary : Department -> Employee;

equations

Employee.manager.worksIn = Employee.worksIn, //1

Department.secretary.worksIn = Department, //2

Employee.manager.manager = Employee.manager; //3

}
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This declaration defines a schema S consisting of two nodes, three attributes, three arrows, and three

equations. In relational terminology, this means that

• Each node corresponds to an entity type. In this example, the entities are employees and departments.

• A node/entity type may have any number of attributes. Attributes correspond to observable atoms of

type int or string. In this example, each department has one attribute, its name, and each employee

has two attributes, his or her first and last name.

• Each arrow f : X → Y corresponds to a function f from entities of type X to entities of type Y . In

this example, manager maps employees to employees, worksIn maps employees to departments, and

secretary maps departments to employees.

• The equations specify the data integrity constraints that must hold of all instances that conform to

this schema. FQL uses equalities of paths as constraints. A path p is defined inductively as

p ::= node | p.arrow

Intuitively, the meaning of “.” is composition. In this example, the constraints are: 1) every employee

must work in the same department as his or her manager; 2) every departmental secretary must work

for that department; and 3) there are employees and managers, but not managers of managers,

managers of managers of managers, etc.

The FQL IDE can render schemas into a graphical form similar to that of an entity-relationship (ER)

diagram. Press “compile”, and select the schema S from the viewer:
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Note that the four sections, “nodes”, “attributes”, “arrows”, and “equations” are ended with semi-colons,

and must appear in that order, even when a section is empty. The “denotation” tab prints the category

that the schema denotes.

Instances

Continuing with the built-in “employees” example, we see that it also contains FQL code that defines an

instance of the schema S defined in the previous section:

instance I : S = {

nodes

Employee -> { 101, 102, 103 },

Department -> { q10, x02 };

attributes

first -> { (101, Alan), (102, Camille), (103, Andrey) },

last -> { (101, Turing), (102, Jordan), (103, Markov) },

name -> { (q10, AppliedMath), (x02, PureMath) };

arrows

manager -> { (101, 103), (102, 102), (103, 103) },

worksIn -> { (101, q10), (102, x02), (103, q10) },

secretary -> { (q10, 101), (x02, 102) };

}

This declaration defines an instance I that conforms to schema S. This means that

• To each node/entity type corresponds a set of globally unique IDs. In this example, the employee IDs

are 101, 102, and 103, and the departmental IDs are q10 and x02.

• Each attribute corresponds to a function that maps IDs to atoms. In this example, we see that

employee 101 is Alan Turing, employee 102 is Camille Jordan, employee 103 is Andrey Markov,

department q10 is AppliedMath, and department x02 is PureMath.
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• Each arrow f : X → Y corresponds to a function that maps IDs of entity type X to IDs of entity

type Y . In this example, we see that Alan Turing and Andrey Markov work in the AppliedMath

department, but Camille Jordan works in the PureMath department.

FQL assumes that every node, attribute, and arrow is stored as a binary table; node tables are stored as

reflexive tables with types of the form (x, x). In addition, FQL assumes that the exact value of IDs are

irrelevant, and in fact FQL will replace our IDs “q10, x02, 101, 102” and “103” with generated IDs

1,2,3,4,5. To visualize this instance, press “compile”, select the instance from the viewer list, and click the

“tabular” tab:

Mappings

Next, load the “delta” example. It defines two schemas, C and D, and a mapping F from C to D:

schema C = {

nodes T1, T2;

attributes

t1_ssn : T1 -> string,

t1_first : T1 -> string,

t1_last : T1 -> string,

t2_first : T2 -> string,

t2_last : T2 -> string,
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t2_salary : T2 -> int;

arrows; equations;

}

schema D = {

nodes T;

attributes

ssn0 : T -> string,

first0 : T -> string,

last0 : T -> string,

salary0 : T -> int;

arrows; equations;

}

mapping F : C -> D = {

nodes T1 -> T, T2 -> T;

attributes

t1_ssn -> ssn0, t1_first -> first0, t1_last -> last0,

t2_last -> last0, t2_salary -> salary0, t2_first -> first0;

arrows;

}

A mapping F : C → D consists of three parts:

• a mapping from the nodes in C to the nodes in D

• a mapping from the attributes in C to the attributes in D

• a mapping from the arrows in C to paths in D

A mapping must respect the equations of C and D: if p1 and p2 are equal paths in C, then F (p1) and

F (p2) must be equal paths in D. If this condition is not met, FQL will throw an exception. Our example

mapping is rendered in the viewer as follows:
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An identity mapping can be formed using the keyword “id” as follows:

mapping F : C -> C = id C

Data Migration

Associated with a mapping F : C → D are three data migration operators:

• ∆F , taking D instances to C instances, roughly corresponding to projection

• ΠF , taking C instances to D instances, roughly corresponding to join

• ΣF , taking C instances to D instances, roughly corresponding to union

In general, certain restrictions must be placed on F to guarantee the above operations exist. We now

describe each in turn.
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Delta

Continuing with the “delta” example, we see that the FQL program also defines a D-instance J , and

computes I := ∆F (J):

instance I : C = delta F J

Graphically, we have

In effect, we have projected the columns salary0 and last0 from J .

Pi

Load the “pi” example:

schema C = {

nodes c1,

c2;
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attributes

att1 : c1 -> string,

att2 : c1 -> string,

att3 : c2->string;

arrows;

equations;

}

schema D = {

nodes

d;

attributes

a1 : d -> string,

a2 : d -> string,

a3 : d -> string;

arrows;

equations;

}

mapping F : C -> D = {

nodes c1 -> d, c2 -> d;

attributes att1 -> a1, att2 -> a2, att3 -> a3;

arrows;

}

This example defines an instance I : C and computes J := ΠF (I):

instance J : D = pi F I

Graphically, this is rendered as:
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We see that we have computed the cartesian product of tables c1 and c2. Note that the attribute mapping

part of F must be a bijection for ΠF to be defined; if this condition fails FQL will throw an exception.

Sigma

Load the “sigma” example:

schema C = {

nodes

a1, a2, a3, b1, b2, c1, c2, c3, c4;

attributes;

arrows

g1 : a1 -> b1,

g2 : a2 -> b2,

g3 : a3 -> b2,
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h1 : a1 -> c1,

h2 : a2 -> c2,

h3 : a3 -> c4;

equations;

}

schema D = {

nodes A, B, C;

attributes;

arrows

G : A -> B,

H : A -> C;

equations;

}

mapping F : C -> D = {

nodes

a1 -> A, a2 -> A, a3 -> A,

b1 -> B, b2 -> B,

c1 -> C, c2 -> C, c3 -> C, c4 -> C;

attributes;

arrows

g1 -> A.G, g2 -> A.G, g3 -> A.G,

h1 -> A.H, h2 -> A.H, h3 -> A.H;

}

This example defines an instance I : C and computes J := ΣF (I):
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instance J : D = sigma F I

Graphically, this is rendered as:

We see that we have computed union of tables a1, a2, and a3 as A (6 rows), the union of tables b1, b2 as B

(5 rows), and the union of c1, c2, c3 and c4 as C (7 rows).

To be defined, the functor F must satisfy the special condition of being a discrete op-fibration, which

basically means “union compatible in the sense of Codd”.

Queries

In SQL, unions of select-from-where clauses are the common programming idiom. In FQL, the common

idiom is Σs of Πs of ∆s. Load the “query composition” example:

schema S = { nodes s ; attributes; arrows; equations; }
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schema T = { nodes t ; attributes; arrows; equations; }

schema B = { nodes b1,b2; attributes; arrows; equations; }

schema A = { nodes a1,a2,a3; attributes; arrows; equations; }

mapping s : B -> S = { nodes b1 -> s, b2 -> s; attributes; arrows; }

mapping f : B -> A = { nodes b1 -> a1, b2 -> a2 ; attributes; arrows; }

mapping t : A -> T = { nodes a1 -> t, a2 -> t, a3 -> t ; attributes; arrows; }

query q1 : S -> T = delta s pi f sigma t

In general, a query is simply a shorthand with special support for composition. Graphically, we have:

The four different colors in the viewer correspond to the four different schemas involved in a query. Queries

may be evaluated using the keyword “eval”:

instance J : S = ...

instance I : T = eval q1 J
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Composition

FQL includes special support for composing queries. Continuing with the “query composition” example, we

see that it defines another query:

schema D = { nodes d1,d2 ; attributes; arrows; equations; }

schema C = { nodes c ; attributes; arrows; equations; }

schema U = { nodes u ; attributes; arrows; equations;}

mapping u : D -> T = { nodes d1 -> t, d2 -> t ; attributes; arrows;}

mapping g : D -> C = { nodes d1 -> c, d2 -> c ; attributes; arrows;}

mapping v : C -> U = { nodes c -> u ; attributes; arrows; }

query q2 : T -> U = delta u pi g sigma v

We compose our two queries as follows:

query q : S -> U = q1 then q2

4.9.2 SQL Output

The FQL compiler emits (naive) SQL code that implements the FQL program. In fact, the FQL IDE

executes the generated SQL to populate the viewer. The generated SQL may simply be copied into a

command-line RDBMS top-level. For example, it can by executed by “mysql embedded”. However, to use

the generated SQL correctly, note the following:

• A binary table R of an instance I is referred to as I R. Hence, every node, attribute, and arrow in a

schema must have a unique name. Names may appear in multiple schema, however.

• FQL is not case sensitive, but many SQL systems are. This may cause inadvertent name collisions.

• To use pre-existing database tables with the generated SQL output, CREATE TABLE commands in

the generated SQL may need be suppressed using the “external” keyword. This mechanism is

described in more detail in the “external” example.
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4.9.3 Other Functionality

Category of Elements

The “Grothendieck” tab in an instance displays the instance as a category, “the category of its elements”.

In this view, nodes are entities and arrows are foreign-key correspondences. This is well illustrated using

the “People” example:
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Relationalization and Observation

Associated with each type of entity in an instance is an “observation table”. For an entity type/node N ,

the observation table joins together all attributes reachable by all paths out of N . Consider the

“relationalize” example:

schema C={

nodes A;

attributes a:A->string;

arrows f:A->A;

equations A.f.f.f.f=A.f.f;

}

instance I:C={

nodes A->{1,2,3,4,5,6,7};

attributes a->{(1,1),(2,2),(3,3),(4,1),(5,5),(6,3),(7,5)};

arrows f->{(1,2),(2,3),(3,5),(4,2),(5,3),(6,7),(7,6)};

}

instance RelI:C=relationalize I

The operation “relationalize” will equate IDs that are not distinguished by attributes. In this example, 7

rows would collapse to 4. The relationalize operation is necessary to faithfully implement relational

projection on relations that have been encoded as functorial instances.
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4.10 FQL as a Functional Query Language

Up to this point in this chapter we have focused entirely on finitely presented schemas, mappings, and data

migration functors. However, FQL is also a functional query language at two different levels: the level of

schemas and mappings, and the level of instances and database morphisms. FQL possesses this structure

because the category of categories is cartesian closed (and hence FQL schemas and mappings form a simply

typed λ-calculus), and because for each signature T , the category of T -instances and their morphisms is a

topos (and hence FQL T -instances and their database homomorphisms form a higher-order logic). For

expediency, we ignore attributes in this section. The goal of this section is to define FQL as a type theory

and formal language of categorical combinators [24].

Let T indicate finitely presented categories, FT1,T2 : T1 → T2 finitely presented functors, IT finitely

presented T -instances (functors from T to the category of sets), and EI1
T
,I2
T

: I1
T ⇒ I2

T finitely presented

natural transformations (database homomorphisms from T-instances I1
T to I2

T ). The syntax of FQL types

T , mappings F , T -instances IT , and T -transformations (database homomorphisms over T -instances) ET is

given by the following grammar:

T ::= 0 | 1 | T + T | T × T | TT | T

F ::= idT | F ;F | proj1
T,T | proj2

T,T | inj1
T,T | inj2

T,T | F ⊗ F | F ⊕ F | ttT | ff T | evT,T | ΛF | FT,T

IT ::= 0T | 1T | IT + IT | IT × IT | IITT | IT | ΩT | ∆F I | ΣF I | ΠF

ET ::= idIT | ET ;ET | proj1
IT ,IT | proj

2
IT ,IT | inj

1
IT ,IT | inj

2
IT ,IT | ET ⊗ ET | ET ⊕ ET

| evIT ,IT | ΛET | >T | ttIT | ff IT | EI1
T
,I2
T
| eqIT | ∆FE | ΣFE| ΠFE
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4.10.1 Types

Types T are freely-generated by the grammar. Type isomorphism is given by:

T1 × (T2 × T3) � (T1 × T2)× T3 T1 × T2 � T2 × T1 T × 1 � 1 1T � 1 T 1 � T

(T1 × T2)T3 � TT3
1 × T

T3
2 (TT2

1 )T3 � TT2×T3
1 T1 + (T2 + T3) � (T1 + T2) + T3 T1 + T2 � T2 + T1

T × 0 � 0 T + 0 � T T 0 � 1 T1 × (T2 + T3) � (T1 × T2) + (T1 × T3) TT2+T3
1 � TT2

1 × T
T3
1

Isomorphism of objects in the free BCCC is not finitely axiomatizable, and its decidability is unknown [34].

For our purposes, isomorphism of finite categories is decidable.

4.10.2 Mappings

The typing rules for schema mappings F are exactly those of the internal language of a bi-cartesian closed

category (i.e., STLC0,1,+,×), with constants F :

idT : T → T

F : T1 → T2 G : T2 → T3

F ;G : T1 → T3 ttT : T → 1 proj1
T1,T2

: T1 × T2 → T1

proj2
T1,T2

: T1 × T2 → T2

F : T1 → T2 G : T1 → T3

F ⊗G : T1 → T2 × T3 ff T : 0→ T inj1
T1,T2

: T1 → T1 + T2

inj2
T1,T2

: T2 → T1 + T2

F : T2 → T1 G : T3 → T1

F ⊕G : T2 + T3 → T1 evT1,T2 : TT2
1 × T2 → T1

F : T1 × T2 → T3

ΛF : T1 → TT2
3 FT1,T2 : T1 → T2
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The equational theory for mappings F is exactly that of the internal language of a BCCC:

id; f = f f ; id = f f ; (g;h) = (f ; g);h Λev = id Λf ⊗ a ; ev = id⊗ a; f f ⊗ g; proj1 = f

f ⊗ g; proj2 = g f ; proj1 ⊗ f ; proj2 = f f = tt (f : T → 1) f = ff (f : 0→ T )

inj1; f ⊕ g = f inj2; f ⊕ g = g inj1; f ⊕ inj2; f = f

4.10.3 Instances

For each T , T -instances IT are freely generated by the grammar. More precisely, the typing rules for

instances IT are:

0T : T − inst 1T : T − inst IT : T − inst

IT : T − inst JT : T − inst

IT + JT : T − inst

IT : T − inst JT : T − inst

IT × JT : T − inst

IT : T − inst JT : T − inst

IJTT : T − inst

F : T1 → T2 I : T2 − inst

∆F I : T1 − inst

F : T1 → T2 I : T1 − inst

ΣF I : T2 − inst

F : T1 → T2 I : T1 − inst

ΠF I : T2 − inst ΩT : T − inst

Instances obey the same equational theory as types, as well as additional equations we have omitted.

4.10.4 Transformations

For each T , the T -database homomorphisms (natural transformations) ET are exactly those of the internal

language of a topos (i.e., STLC0,1,+,×,Ω or higher-order logic from chapter 3). This language is essentially

the same as F , extended with eq and >. More precisely:
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idIT : IT ⇒ IT

E : I1
T ⇒ I2

T E′ : I2
T ⇒ I3

T

E;E′ : I1
T ⇒ I3

T ttIT : IT ⇒ 1T proj1
I1
T
,I2
T

: I1
T × I2

T ⇒ I1
T

proj2
I1
T
,I2
T

: I1
T × I2

T ⇒ I2
T

E : I1
T ⇒ I2

T E′ : I1
T ⇒ I3

T

E ⊗ E′ : I1
T ⇒ I2

T × I3
T ff IT : 0T ⇒ IT inj1

I1
T
,I2
T

: I1
T ⇒ I1

T + I2
T

inj2
I1
T
,I2
T

: I2
T ⇒ I1

T + I2
T

E : I2
T ⇒ I1

T E′ : I3
T ⇒ I1

T

E ⊕ E′ : I2
T + I3

T ⇒ I1
T evI1

T
,I2
T

: I1
T
I2
T × I2

T ⇒ I1
T

E : I1
T × I2

T ⇒ I3
T

ΛE : I1
T ⇒ I3

T
I2
T EI1

T
,I2
T

: I1
T ⇒ I2

T eqIT : IT × IT ⇒ ΩT >T : 1T ⇒ ΩT

F : T1 → T2 E : I1
T2
⇒ I2

T2

∆FE : ∆F I
1
T2
⇒ ∆F I

2
T2

F : T1 → T2 E : I1
T1
⇒ I2

T1

ΣFE : ΣF I1
T1
⇒ ΣF I2

T1

F : T1 → T2 E : I1
T1
⇒ I2

T1

ΠFE : ΠF I
1
T1
⇒ ΠF I

2
T1

Database homomorphisms obey the same equational theory as mappings, as well as additional equations

we have omitted.

4.11 Conclusion

We are working to extend FQL with additional operations such as difference, selection by a constant, and

aggregation. In addition, we are studying the systems aspects of FQL, such as the data structures and

algorithms that would be appropriate for a native, non-SQL implementation of FQL. More speculatively,

for every monad M in the category of sets, the functorial data model admits generalized M -instances [75],

which are database instances where every foreign-key reference to a value of type t has been replaced by a

value of type M t. We speculate that this additional structure can be used to extend FQL to handle purely

functional implementations of monadic computational effects in the traditional style [65]. Finally, FQL

queries where the source and target schemas have exactly one node can encode polynomial functors [36].

This opens the possibility of extending FQL with algebraic datatypes or recursive queries.
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Chapter 5

Conclusion

We conclude with some thoughts on dependently-typed functional query languages (DT-FQLs). Given that

dependent identity types can be used to represent data integrity constraints (chapter 2), it is likely that

other dependent types can be used to represent other program properties useful for query processing. For

example, we might allow users of a monad-based functional query language [17] to define their own monads

and to prove that their definitions obey the monad laws. As another example, in languages that represent

sets as lists, to correctly define a recursive function over a set we must ensure that the function does not

depend on the order of the list elements [15]. Although checking such conditions is undecidable, proving

such conditions is commonplace in dependently-typed languages such as Coq. We are thus hopeful that

general dependent types can be used to good effect in functional query languages, but in obtaining the

results described in this thesis we discovered two fundamental challenges that any DT-FQL must overcome.

First, users of a DT-FQL must be able to construct proof objects, either manually or automatically.

Rather than build the significant amount of infrastructure required to program effectively with dependent

types [11], a more lightweight approach would be to define a DT-FQL by giving a shallow embedding of the

DT-FQL into a language like Coq, leaving “holes” for proof obligations to be discharged. Users of the

DT-FQL could then program against a convenient surface syntax, but would also be able to rely on Coq’s

mature technology to ease the theorem proving burden. Unfortunately, reasoning about shallow

embeddings can be considerably more difficult than reasoning about the embedded language directly [55].

We conclude that a better way to develop a DT-FQL would be as a domain-specific macro language inside

of Coq [21]. Optimizations such as the chase (chapter 2) could be implemented as Coq plug-ins or tactics.
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Second, building a traditional compiler for a DT-FQL requires a useful equational theory for the DT-FQL

as well as a practical strategy for searching for equivalent programs. In practice, this requires being able to

express the DT-FQL in an algebraic form. For example, the relational calculus compiles to the relational

algebra, the nested relational calculus compiles to the nested relational algebra, and the simply-typed

lambda calculus compiles to the categorical abstract machine language [24]. Unfortunately, algebraic

formulations of many typed λ-calculi are currently unknown. We thus suggest that a DT-FQL adopt one of

three possible compilation strategies: (1) compiling into the untyped SKI combinatory algebra [8], (2)

compiling into an algebraic formulation of the calculus of constructions [73], or (3) compiling into the

binary relation algebra [72] . In all cases it is unclear if the resulting equational theory will be useful in

practice.
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