
Using Dependent Types and Tactics to Enable
Semantic Optimization of Language-Integrated Queries

Gregory Malecha, gmalecha@eng.ucsd.edu
Ryan Wisnesky, wisnesky@math.mit.edu

DBPL
October 27, 2015

Outline
§ Goal: build a query optimizer in Coq

§ not to prove it correct, but
§ to optimize monad comprehensions

§ toward dependently-typed LINQ!

§ I will describe:
§ the basics of conjunctive query optimization
§ how to represent data integrity constraints in Coq
§ how to build a query optimizer as a Coq tactic

§ Who cares?
§ Coq users can use our tactic to optimize monad comprehensions in a

provably correct way.
§ Our work gives a design pattern for optimizing Coq code using tactics.

§ Talk goals:
§ Introduce semantic query optimization to functional programmers
§ Introduce dependently-typed programming to database specialists
§ The details of the Coq tactic are too difficult to convey in a talk

2 / 21

Overview

§ Part 1:
§ Given a relational conjunctive query Q
§ and a set of constraints C of the form @~x.φp~xq Ñ D~y.ψp~x, ~yq
§ we can compute a unique minimal query Q1 such that C $ Q – Q1

§ or diverge

§ Part 2:
§ Given a commutative, idempotent monad with zero in Coq
§ and a Coq monad comprehension Q
§ and a set of Coq proof objects C
§ our Coq tactic (semi) computes Q1 and a proof that C $ Q – Q1

3 / 21

Semantic (constraint-aware) optimization

§ Return tuples pd, aq where a acted in a movie directed by d.

for pm1 in Moviesq pm2 in Moviesq

where m1.title “ m2.title

return pm1.director,m2.actorq

§ Under functional dependency title Ñ director is equivalent to:

for pm in Moviesq

return pm.director,m.actorq

4 / 21

Embedded Dependencies (EDs)

§ Let P and B be conjunctions of equalities (e.g., x1 “ x2) and
memberships (e.g, Rpx1, x2q):

forall
ÝÝÝÝÝÝÑ
px in Xq

where P pÝÑx q

exists
ÝÝÝÝÝÝÑ
py in Y q

where BpÝÑx ,ÝÑy q

§ Functional dependency title Ñ director expressed as:

forall px in Moviesq py in Moviesq

where x.title “ y.title,

exists

where x.director “ y.director

5 / 21

The front and back of an ED

C :“ forall
ÝÝÝÝÝÝÑ
px in Xq

where P pÝÑx q

exists
ÝÝÝÝÝÝÑ
py in Y q

where BpÝÑx ,ÝÑy q

frontpCq :“ for
ÝÝÝÝÝÝÑ
px in Xq

where P pÝÑx q

return pÝÑx q

backpCq :“ for
ÝÝÝÝÝÝÑ
px in Xq

ÝÝÝÝÝÝÑ
py in Y q

where P pÝÑx q ^BpÝÑx ,ÝÑy q

return pÝÑx q

@I, I |ù C iff frontpCqpIq “ backpCqpIq

6 / 21

Homomorphisms of queries

§ A homomorphism h : Q1 Ñ Q2 between queries:

for
ÝÝÝÝÝÝÝÑ
pv1 in V1q

where P1p
ÝÑv1q

return R1p
ÝÑv1q

Ñh

for
ÝÝÝÝÝÝÝÑ
pv2 in V2q

where P2p
ÝÑv2q

return R2p
ÝÑv2q

§ is a substitution ÝÑv1 ÞÑ ÝÑv2 such that

§
ÝÝÝÝÝÝÝÝÝÑ
phpv1q in V1q Ď

ÝÝÝÝÝÝÝÑ
pv2 in V2q

§ P2p
ÝÑv2q $ P1phpÝÑv1qq

§ P2 $ R1phpÝÑv1qq “ R2p
ÝÑv2q

§ Q1 Ñ Q2 implies @I, Q2pIq Ď Q1pIq

7 / 21

The Chase

C :“ forall
ÝÝÝÝÝÝÑ
px in Xq

where P pÝÑx q

exists
ÝÝÝÝÝÝÑ
py in Y q

where BpÝÑx ,ÝÑy q

Q :“ for
ÝÝÝÝÝÝÑ
pv in V q

where OpÝÑv q
return RpÝÑv q

§ When h : frontpCq Ñ Q,

steppC,Qq :“ for
ÝÝÝÝÝÝÑ
pv in V q

ÝÝÝÝÝÝÑ
py in Y q

where OpÝÑv q ^Bp
ÝÝÑ
hpxq,ÝÑy q

return RpÝÑv q

C $ Q – steppC,Qq

§ The chase is to step until a fixed point is reached.

C $ Q1 – Q2 if chasepC,Q1q Ø chasepC,Q2q

8 / 21

Tableaux Minimization

§ Given a query Q and set of EDs C

§ we first chase Q with C to obtain U , a so-called universal plan

§ then we search for sub-queries of U , chasing each in turn with C to
check for equivalence with U .

9 / 21

Q1 :“ for pm1 in Moviesq pm2 in Moviesq

where m1.title “ m2.title

return pm1.director,m2.actorq

C :“ forall px in Moviesq py in Moviesq

where x.title “ y.title

exists

where x.director “ y.director

chasepC,Q1q “ for pm1 in Moviesq pm2 in Moviesq

where m1.title “ m2.title^

m1.director “ m2.director

return pm1.director,m2.actorq

minpchasepC,Q1qq “ for pm2 in Moviesq

return pm2.director,m2.actorq 10 / 21

Part 2

§ Part 1:
§ Given a relational conjunctive query Q
§ and a set of constraints C of the form @~x.φp~xq Ñ D~y.ψp~x, ~yq
§ we can compute a unique minimal query Q1 such that C $ Q – Q1

§ or diverge

§ Part 2:
§ Given a commutative, idempotent monad with zero in Coq
§ and a Coq monad comprehension Q
§ and a set of Coq proof objects C
§ our Coq tactic (semi) computes Q1 and a proof that C $ Q – Q1

11 / 21

Coq
§ Coq is a proof assistant based on functional programming with

dependent types:

Inductive List (A : Type) : Nat Ñ Type :=
| nil : List A 0
| cons : @(n : Nat), A Ñ List A n Ñ List A (n + 1).

Definition append A n m : List A n Ñ List A m Ñ List A (n + m)
:= . . .

§ Coq programs can be built interactively using a scripting language:

Theorem append_unit : @ A n m l, append A n m nil l = l.
Proof.
intros; induction n;

[reflexivity | simpl in ∗; rewrite H; trivial].
Qed.

§ Coq is an intriguing ambient language for querying:

Definition f (C: ED) I (pf: holds I C) := . . .

12 / 21

Queries in Coq

Definition Movie : Type := (string ˆ string ˆ string).
Definition Movies : set Movie := . . .

Definition title x := fst x. (* x.title *)

Definition director x := fst (snd x). (* x.director *)

Definition actor x := snd (snd x). (* x.actor *)

Definition q : set (string ˆ string) :=
m1 Ð Movies ; m2 Ð Movies ;
guard (m1.title = m2.title) ;
return (m1.director, m2.actor).

Definition optimized_query:
{qopt : set (string ˆ string) | title_director_ed Ñ qopt – q}.
optimize solver.

Eval compute in (proj1 optimized_query).
(* = x Ð Movies ; return (x.director, x.actor)
* : set (string ˆ string) *)

13 / 21

Idempotent, Commutative Monads

Class DataModel (M : Type Ñ Type) : Type :=
{ Mret : @ {T}, T Ñ M T

; Mzero : @ {T}, M T

; Mbind : @ {T U}, M T Ñ (T Ñ M U) Ñ M U

(* plus many axioms, including

for (x in X)(y in Y) = for (y in Y)(x in X)

for (x in X)(x in X) = for (x in X)

*)

}.

§ Example: Finite sets

§ Mret v = tvu

§ Mzero = tu

§ Mbind m k =
Ť

xPm kpxq. Write x Ð m ; k for Mbind m (fun x ñ k)

14 / 21

Queries and EDs in Coq

(* Queries *)

Definition query {S T: Type}
(P : M S) (C : S Ñ bool) (E : S Ñ T) : M T :=
Mbind P (fun x ñ Mguard (C x) (Mret (E x))).

(* Embedded Dependencies *)

Definition embedded_dependency {S S’: Type}
(F : M S) (Gf : S Ñ bool) (B : M S’) (Gb : S Ñ S’ Ñ bool)

:= Meq (query F Gf (fun x ñ x))
(query (Mprod F B)

(fun ab ñ Gf (fst ab) && Gb (fst ab) (snd ab))
(fun x ñ fst x)).

15 / 21

Tactic basics

§ A tactic can examine this Coq code:

Definition q_LOR : set (string ˆ string) :=
m1 Ð Movies ;
guard (m1.title ?= ‘‘Lord of the Rings’’) ;
m2 Ð Movies ;
guard (m1.title ?= m2.title) ;
return (m1.director, m2.actor).

§ and normalize it into:

Definition q_LOR’ : set (string ˆ string) :=
m1 Ð Movies ;
m2 Ð Movies ;
guard (m1.title ?= ‘‘Lord of the Rings’’ && m1.title ?= m2.title) ;
return (m1.director, m2.actor).

§ and emit an equality proof using the monad laws.

16 / 21

Tactics, continued

§ A Coq proof goal is a sequent, Γ $? : t, where Γ is a context of Coq
terms and t is a Coq type.

§ A tactic can transform a proof goal into new goals:

Γ $? : t ÝÑ tΓ1 $?1 : t1, . . . ,Γ2 $?2 : t2u

§ or solve a proof goal by building a term from the context:

Γ $? : t ÝÑ Γ $ e : t

§ Our proof goals are queries and semantics-preservation proofs, and our
transformations are re-write rules.

17 / 21

Tactics, continued

§ Coq’s tactics are designed for general-purpose theorem proving.

§ So, the challenge is to map query optimization onto these tactics.

§ This requires many structural lemmas, for example

p@x,Qpxq – Q1pxqq ÝÑ for px in Xq, Qpxq – for px in Xq, Q1pxq

§ and a tactic to exhaustively search for homomorphisms

§ and tactics to match sub-terms of queries

§ The payoff is a tactic that operates directly on Coq programs, rather
than on a type of syntax for queries.

18 / 21

Analysis of the tactic-based approach

§ Benefits:
§ Supports nested relations simply by proving new lemmas. (Contrast to

deep-embedding approach)
§ Supports arbitrary Coq computation in where clauses with no effort.
§ Re-use of existing Coq infrastructure - higher-order unification, and

backtracking search are built-in.

§ Drawbacks:
§ Tactics are completely untyped, and so are error-prone to develop.
§ Many similar lemmas had to be proved.
§ Speed - finding homomorphisms is NP but Ltac is nonetheless slow.

19 / 21

Conclusion

§ Part 1:
§ Given a relational conjunctive query Q
§ and a set of constraints C of the form @~x.φp~xq Ñ D~y.ψp~x, ~yq
§ we can compute a unique minimal query Q1 such that C $ Q – Q1

§ or diverge

§ Part 2:
§ Given a commutative, idempotent monad with zero in Coq
§ and a Coq monad comprehension Q
§ and a set of Coq proof objects C
§ our Coq tactic (semi) computes Q1 and a proof that C $ Q – Q1

§ Take-away:
§ Coq users can use our tactic to optimize monad comprehensions in a

provably correct way.
§ Our work gives a design pattern for optimizing Coq code using tactics.
§ Toward dependently-typed LINQ!

20 / 21

Thanks to

§ ONR grant N000141310260

§ AFOSR grant FA9550-14-1-0031

§ Lucian Popa

21 / 21

