
Collection Processing with Constraints, Monads, and Folds

Ryan Wisnesky
Harvard University

ryan@cs.harvard.edu

Abstract
We propose an intermediate form based on monad-algebra compre-
hensions (to represent queries), folds (to represent computation),
and setoids over polynomial datatypes (to represent data), suitable
for use in collection processing. Such an intermediate form cap-
tures, in a uniform way, large fragments of many recent large-
scale collection processing languages such as MapReduce, PIG,
DryadLINQ, and Data Parallel Haskell, and admits optimization
techniques from both programming language theory and relational
database theory. We show how to solve four key problems inher-
ent in the naive approach by drawing together recent work from
both communities. First, we show how fold fusion can be extended,
in an arguably complete way, to exploit the monadic structure of
queries. Second, we show how monad comprehensions can be ex-
tended to monad-algebra comprehensions, so as to express aggre-
gation and thereby enable comprehension-based optimizations for
a wide class of queries. Third, we show how to embed a particular
syntactic class of constraints called embedded dependencies into
our intermediate form and show how such constraints can be used,
for example, to minimize the number of bind operations in a monad
comprehension - a process traditionally known as semantic opti-
mization. Finally, we show how to emit proof obligations from our
language, so as to ensure that each program is sound with respect to
required axioms (such as the monad laws) as well as user-provided
invariants (such as ensuring all sets are represented by lists without
duplicates).

1. Introduction
Collection processing is a fundamental problem in computer sci-
ence, and specialized languages for collection processing are al-
most as old as programming itself. SETL [24] (short for set lan-
guage) first appeared in 1969 and bears a striking resemblance to
mathematical set theory, providing operations such as membership,
union, intersection, comprehension, powerset, and quantification.
SETL was remarkable for its high level of abstraction: users speci-
fied what they wanted, not how to compute it. Languages that focus
on the what over the how are called declarative, and by the early
1980s, the success of the relational model firmly established the
dominance of the declarative paradigm for collection processing.

Declarative languages are useful for collection processing pri-
marily because of scale. Today it is possible to cheaply process
petabytes of data on thousands of networked commodity machines.
At this scale it is infeasible for a programmer to completely specify
how to compute a given query. On the other hand, the poor asymp-
totic performance of naively executed declarative queries means
that without sophisticated optimization, even simple queries can
take entire lifetimes to run. For this reason, the optimization and
implementation of queries in a variety of declarative languages on
a variety of systems has been extensively studied by the program-
ming language, database, and systems communities over many
decades [21].

Although modern collection-oriented languages are invari-
ably declarative, they are not always relational. SQL is a (quasi-
relational) mainstay of collection processing, but the past decade
has seen an explosion of more expressive languages designed for
very large-scale collection processing over clusters of commod-

ity machines. Examples of such systems include MapReduce-
Merge [30], Data Parallel Haskell [8], DyadLINQ [20], PIG [22],
and Fortress [10], as well as their predecessors NESL [3], and
Kleisli [29]. These languages are functional query languages [26],
which base their syntax and semantics, at least in part, on purely
functional programming languages.

Functional query languages extend relational query languages
by providing more general kinds of data and more expressive oper-
ations. Whereas relational algebra provides only relations as data
and six operations - join, project, select, union, difference, and
rename, functional query languages may provide for additional,
nested datatypes such as lists and trees, as well as recursive func-
tions. Although functional query languages vary in the kinds of
queries and collections they support, large fragments of these lan-
guages can be formalized in a uniform way using monads (to model
collections), comprehensions (to model queries), setoids over poly-
nomial datatypes (to model data), and folds (to model computa-
tion) [16].

In arguing for the usefulness of such a formalization, Grust ob-
served [16] that effective intermediate forms for a query languages
have the following properties:

• (Ex) Capability of expressing any user query (this affects query
operators as well as the type system).

• (Abs) Abstraction from user-level queries while providing a
granularity of representation that makes all relevant query lan-
guage constructs subject to inspection and transformation.

• (Eq) A well-understood equational theory that decides the
equivalence preservation of expression transformations.

• (Map) A suitable starting point for a mapping to the access
primitives of the underlying persistent store.

Relational algebra meets these criteria, and indeed has proven to be
an effective intermediate form for modern relational database sys-
tems. A sketch of the design of a good intermediate form for more
general functional query languages is the principle contribution of
this paper, with additional details and an implementation to follow
in the author’s forthcoming Ph.D. thesis.

1.1 Motivation
The idea of an intermediate form and query processing pipeline
based on folds and setoids over polynomial datatypes was first ex-
plored by the relational database community in the 90’s during a
search for principled extensions to the relational model [5]. How-
ever, optimizing folds over setoids is difficult because it is not de-
cidable if a fold respects a setoid. For this reason, the community
developed more restrictive languages, like the nested relational cal-
culus (NRC), which could be translated into folds in a principled
way and yet still admit the sophisticated optimization developed for
relational calculus over the proceeding two decades. Unfortunately,
the NRC is not expressive enough to capture the functional query
languages in use today. (Besides lacking (Ex), it is also unclear if
the NRC possesses (Abs) and (Map) - see [15] for details).

Around the turn of the millenium, Grust picked up the fold-
setoid idea and developed a formalism, the Monad Comprehension
Calculus (MCC), that provides a theoretical starting point for our

work [15, 16]. The MCC is essentially a simply-typed lambda cal-
culus extended with polynomial datatypes and fold primitives, as
well as syntactic sugar (essentially do-notation) for monad compre-
hensions. It meets the above criteria: (Ex) holds because all prim-
itive recursive functions can be expressed using folds; (Abs) holds
because monad comprehensions de-sugar into folds; (Eq) holds be-
cause the algebra of programming [2] and equational theory of the
λ-calculus are well-understood; and (Map) holds because an imple-
mentation need only implement fold, but can potentially implement
other special operations (such as join or intersection).

Although it is a good starting point, the MCC is not directly
useful for modern collection processing for several reasons:

• (Lack of Fusion) The primary optimization technique for the
MCC is well-known fold-build fusion [14]. This kind of fusion
eliminates intermediate data structures and can be very power-
ful when it applies, but applicability is limited. For example, it
cannot optimize certain uses of the list append function. This is
particularly problematic for query processing, where such oper-
ations are common. Moreover, fusion applies only to folds, and
cannot take advantage of the monadic structure of queries.

• (Lack of Aggregation) Comprehension notation, as developed
in the MCC (and in Haskell), cannot be used for aggregation.
For example, it is impossible to write a comprehension to com-
pute the sum of a list of integers. Although it is possible to
aggregate collections using folds directly, doing so means that
comprehension notation is not expressive enough to capture all
user-level queries – thereby violating criteria (Ex) and (Abs).

• (Lack of Constraints) The MCC lacks any mechanism for ex-
pressing constraints; that is, properties that hold of the particu-
lar data at hand, such as key constraints or join decompositions.
As years of experience in relational data management demon-
strate, such properties are very important at scale [4]. For ex-
ample, a key constraint can allow what would be a full scan of
a set to be replaced with a simple lookup.

• (Lack of Proofs) The MCC (and functional query languages in
general) place a lot of trust in the programmer. For example,
it is up to the programmer to verify that a monad actually
obeys the monad laws, or that a set is correctly represented
and manipulated using an underlying list. A compiler can not
in general prove that such undecidable properties hold.

Moreover, the MCC lacks programming language features which
are particularly useful for collection processing, such as type-
inference, row-polymorphism, and extensible records.

1.2 Contributions
The primary contribution of this paper is to show how to ad-
dress the above challenges. We propose an intermediate form
based on monad-algebra comprehensions, setoids over polynomi-
als datatypes, and folds which is suitable for use with a variety of
collection-oriented languages. In the decade since the MCC was
proposed, each of these problems has been thoroughly studied by
either the programming languages or database theory community.
Our proposed intermediate form applies these results:

• To address (Lack of Fusion), we show how recent theoretical
work on monadic augment can be used to optimize queries. The
augment operation, originally proposed by Gill [14] to cover the
problematic case of the non-fusability of list append, general-
izes the build operation and is more amenable to fusion. In [13],
the authors show that for many monads, the bind operation can
be written as an augment, enabling significantly more optimiza-
tion opportunities.

• To address (Lack of Aggregation), we show how comprehen-
sions, which traditionally are defined in terms of a monad, can
instead be defined in terms of a monad algebra. This addi-
tional generality allows comprehensions to compute aggrega-
tions such as the sum of a list of integers. Moreover, our com-

prehension optimizations apply uniformly to both monad com-
prehensions and monad algebra comprehensions [23].

• To address (Lack of Constraints) we show how to optimize
monadic queries in the presence of so-called embedded, im-
plicational dependencies, a technique originally developed in
relational database theory [23]. Constraints induce additional
equations between comprehensions that can be exploited later,
for example to minimize the number of bind operations in a
monad comprehension.

• To address (Lack of Proof) we show how to emit proof obli-
gations which can be solved semi-interactively by the user in
the Coq proof assistant. The correctness of the user program,
as well as our optimizations, is contingent on the provability
of these obligations. Given that many queries take days to run,
we do not see the additional effort of semi-interactive proving
as an undue burden, especially with recent advances in proof
engineering.

Our intermediate form combines elements of relational database
theory and programming language theory in fundamentally new
and novel ways. We hope that it will serve as a vehicle for further
technology transfer between the two areas.

1.3 Related Work
The main alternative to functional query languages are extended re-
lational algebras, which were heavily studied by the database com-
munity in the 1990s [6, 28]. Such languages provide nested rela-
tions as well as grouping, aggregation, and recursion operations.
Operations are chosen so as to be natural extensions of relational
operations. This leads to a smooth integration with traditional re-
lational database theory, but most modern collection-oriented lan-
guages descend more from the functional query language tradition.
See [15] for a comparison of the two approaches.

1.4 Outline
We begin with an overview of our intermediate form in Section 2.
This overview should be accessible to anyone with a functional pro-
gramming background, but Haskell experience is particularly use-
ful. The four areas above are then each addressed in a section: gen-
eralized fusion in Section 3, aggregation in Section 4, reasoning
under constraints in Section 5, and obligation generation in Sec-
tion 6. A diagram of our compiler is shown in Figure 1.4. Note
that features which are de-sugared before translation into an in-
termediate form in traditional compilers (such as comprehensions
and folds) form the basic concepts involved in our compiler; this
suggests that our techniques may apply to early compiler pipeline
stages in general purpose languages such as Haskell.

2. Overview
Our formal starting point is Jones’ qualified type system of exten-
sible records and variants [12], which can be thought of as a variant
of Haskell and is implemented in the TREX extension to Hugs. It
has many important properties:

• Strong normalization
• Sound and complete type inference
• Extensible records and variants, equated up-to label permuta-

tion

Each of these features is indispensible in collection processing.
Rather than describe in detail how records and variants behave in
our language, we refer the reader to [12] and simply note that the
intended meaning of (lbl1 : x, lbl2 : y) is a record with two labels,
and .lbl represents the operation of projecting label lbl. We will use
standard Haskell syntax whenever possible in this paper.

Unlike Haskell, we disallow recursive function definitions and
certain algebraic datatype definitions. Instead we have only one
particular kind of recursion: folds over polynomial datatypes. Con-
sider a datatype definition:

Figure 1. Compiler Pipeline

data List a = Nil | Cons A (List A)

This creates a type constructor List and data constructors Nil and
Cons. Rather than providing case analysis, in our language the only
way to process a value of type List t is by using a fold. This
datatype definition creates a fold combinator, which is subscripted
by the name of the inductive type it is for; subscripts can be readily
inferred and will be omitted when possible. The fold operation
is primitive in our language, with no programmer-visible body.
However, fold for lists obeys the equations:

fold : B -> (A -> B -> B) -> listraw A -> B
fold nil’ cons’ Nil = nil’
fold nil’ cons’ (Cons hd tl) =
cons’ hd (fold nil’ cons’ tl)

It is easy to see that folding is essentially replacing the data con-
structors Nil and Cons with the functions nil′ and cons′ of
appropriate type; indeed, foldX is a “spine transformation” or
homomorphism between X-algebras. Folds, in combination with
records, are sufficient to express all primitive recursive functions
over such initial algebras [19]. Here is how to define a count func-
tion:

count :: List a -> nat
count = fold 0 (\hd tl -> 1 + tl)

In addition to fold, a datatype declaration also creates a build
operator, which serves as a kind of inverse to fold. For lists, build
obeys the following equation:

build :: (forall b. b -> (a -> b -> b) -> b) -> List a
build g = g Nil Cons

Here, the function g must be parametric in the type b, which is
indicated by the placement of the forall quantifier in the type.
The build and fold operations are related by the following law,
which serves as the basis of fold-build fusion:

fold n c (build g) = g n c

The soundness of the fold-build fusion law depends crucially on
parametricity [27] holding for our language. We believe this to be
the case.

build and fold exist for any polynomial datatype (using initial
algebra semantics). Just like with lists, folds over other datatypes
specify a “spine-transformer” recursion scheme for which fusion
applies. For details, see [13]. Polynomial datatypes are algebraic
datatypes that don’t use function spaces, and instead consist solely
of products and sums. For example, we must reject the following
definitions:

data Bad = C (Int -> Bad)

data Bad = Lam (Bad -> Bad)

Although it is possible to define a fold over the first datatype, it
is unclear how to interpret it as a concrete collection. The second
definition has a non-positive use of a function space (that is, the
type being defined appears to the left of an arrow), and hence has
no fold combinator.

2.1 Quotients
Polynomial datatypes alone are not sufficient for representing non-
free collections such as sets and bags. Such collections have an
equality that is coarser than simple structural equality. Hence to
represent such collections, we must quotient a carrier such as List
by an equivalence relation. Our intermediate form provides support
for doing so in a first-class way. As an example, we can obtain
sets in insert presentation1 by quotienting lists with an equivalence
relation such that Cons 1 (Cons 1 Nil) is related to Cons 1 Nil:

Set is List quotient by
(==) :: Eq a => List a -> List a -> Bool
a == b = ...
-- a == b when forall x, lookup x a = lookup x b

A lifting operation is generated to lift a function from a carrier
to a quotient. At runtime, lifting is a no-op. For example:

count’ :: Set a -> Nat
count’ = lift_Set count

Note that lift is a family of operations, and has no single type.
Rather, its type is the type of its input with the quotient type sub-
stituted for the carrier type. Principled ways to lift are discussed
in [25]. As we will see later, each use of lift or fold at a quo-
tient type inserts a proof obligation that the underlying equiva-
lence relation is respected. In this example we cannot actually
discharge the generated obligation because it is not the case that
count (Cons 1 (Cons 1 Nil)) = count (Cons 1 Nil).

The Boom Hierarchy
Bags, lists, and sets using insert presentation; that is, Nil and Cons
are traditional examples in collection processing because they have
a minimal number of constructors. However, to demonstrate the
expressiveness of polynomial datatypes and equivalence relations
let us first define union presentation, which makes use of three
constructors, Empty, Singleton, and Union.

data Boom A =
Empty

| Singleton A
| Union (Boom A) (Boom A)

The fold over Boom is (omitting empty’, singleton’, and union’
for brevity):

fold Empty = empty’
fold (Singleton hd) = singleton’ hd
fold (Union l r) = union’ (fold l) (fold r)

The free structure is binary trees. The Boom hierarchy is a family
of 16 data structures formed by taking, independently, an equiva-
lence relation containing up to four properties: a unit for Union, as-
sociativity of Union, commutativity of Union, and idempotency of
Union. Some of the data structures in the Boom hierarchy are well-
known; for example, associativity of Union gives us lists in union
presentation. Others are less well-known; for example [7], adding
idempotency of Union gives us lists that disregard equivalent adja-
cent sublists. For example, banana is equivalent to bana is equiv-
alent to bbbabababana. The ability to deterministically convert

1 Insert presentation means that each set is defined as either the empty set
or by the insertion of an element into a set. In other words, Nil and Cons.

structures of one type to another (for example, list to set but not
set to list) partially orders the Boom hierarchy. In our intermedi-
ate form, only conversions that respect this order generate provable
obligations.

2.2 Collection Monads
We will express collections using monads with zeros. A monad
with zero consists of a type constructor M and three operations,
return : t → M t, bind : M t → (t → M t′) → M t′, and
zero :M t. Our monads are constructed just like in Haskell, using
the typeclass mechanism. For example,

instance Monad List where
return :: t -> List t
return x = Cons x Nil

bind :: List t -> (t -> List t’) -> List t’
bind x f = concat (map f x)

zero :: List t
zero = Nil

--

instance Monad Set where
return = Singleton
bind x f = Union (map f x)
zero = Empty

Here, concat flattens a list of lists into a single list, and union
flattens a set of sets into a single set. map applies a function to each
element of a set or list. Monads with zero must obey five laws (up-
to equivalence relations):

bind (return x) f = f x
bind m return = m
bind (bind m f) g = bind m (\x -> bind (f x) g)
bind zero f = zero
bind m (\x -> zero) = zero

Our compiler emits proof obligations that these properties hold.
Although it is not immediately obvious, binary trees (that is, the

free structure of the Boom datatype in the previous subsection) do
not have a zero [23], but using an equivalence relation that admits
a unit for Union does imply a monadic zero.

To make it easier to write monadic expressions, we will use
Haskell’s standard do-notation:

do x <- X
c

= bind X (\x -> c x)

For example, the cartesian product of two sets can be expressed as:

do x <- X
y <- Y
return (l: x, r: y)

Remark By using Haskell-style type-classes, we limit our-
selves to associating a single monad definition with each algebraic
datatype. In practice, this restriction is infeasible. We have yet to
determine a good solution to this problem, but look to [25] for
inspiration.

2.3 Comprehensions and Queries
As functional programmers know, monads with zeroes support
a particularly compact notation known as comprehension nota-
tion [4]. To enable powerful optimizations originally developed
in database theory, we will be focusing on a particular subset of
comprehensions which are path conjunctive [23]. A path conjunc-
tive comprehension is a query and is intended to be the primary
way in which users write computations. They have the the follow-
ing form. We will abbreviate vectors of variables x1, ..., xN as −→x .

Fix a monad with zero M and let
−−−−−→
X :M t. We will write P (−→x)

and B(−→x) to indicate a conjunction of equalities between paths
(sequences of record projections) with head variables −→x . We will
write R(−→x) to indicate an arbitrary expression containing (poten-
tially) the variables −→x . A query has the form:

for
−−−−−→
(x inX)

where P (−→x)

R(−→x)

Despite their unfamiliar form, path-conjunctive queries are inter-
preted in a straightforward way:

do x1 ← X1

. . .

xN ← XN

if P (x1, . . . , xN)

then R(x1, . . . , xN)

else zero

An example query is

query :: MonadZero M => M (l: t) -> M (l: t) -> M t
query r s = for (x in r) (y in s)

where x.l = y.l
return x.l

As another example, in the set monad the following query returns
(a set of) tuples (d, a) where a acted in a movie directed by d:

query :: MonadZero M =>
M (director: String, actor: String) ->
M (d: String, a: String)

query movies = for (m1 in movies) (m2 in movies)
where m1.title = m2.title
return (d: m1.director, a: m2.actor)

In fact, path-conjunctive comprehensions such as these corre-
spond precisely to “select-from-where” queries in SQL and “select-
project-join” queries in relational algebra. We may write the above
query in SQL as:

SELECT m1.director. m2.actor
FROM Movies AS m1, Movies AS m2
WHERE m1.title = m2.title

Haskell’s list comprehension syntax is also similar. Finally,
note that it is possible to allow generators to be dependent, which
corresponds to nesting; for example: for (x in S.x) (y in x)
...

Having given an overview of the naive monad comprehension
calculus, we turn now to the problems with this approach and our
solutions.

3. Fusion
Because of the scale at which modern collection processing sys-
tems operate, it is extremely important to remove intermediate data
structures. At the implementation level, this usually means that op-
erations such as fold do not operate on collections as a whole,
but instead try to process their elements one-at-a-time. In effect, a
graph of folds can become a pipeline of iterators, and this funda-
mental technique has been a mainstay of collection processing for
many years. However, this technique is not a panacea, and it is the
job of the intermediate form to reduce the number of folds (and
builds) required of any given query. Although the database com-
munity has studied this problem for relational languages, in our
more general setting we must turn to the programming language
community for a suitable theory of fusion.

So-called “short-cut fusion” is traditionally introduced with the
following example [13, 14]. Suppose we want to square the num-
bers in a list and then compute the sum. We would write:

sum :: List Int -> Int
sum = fold 0 (+)

map :: (a -> b) -> List a -> List b
map f xs = build (\n c -> fold n (c . f) xs)

sqr :: Int -> Int
sqr x = x * x

sumSqs :: List Int -> Int
sumSqs xs = sum (map sqr xs)

Here we are using Haskell abbreviations, writing (+) for the ad-
dition operation and (c . f) for c composed with f . As written,
this definition produces an intermediate list, because sumSqs un-
folds to:

sumSqs xs = fold 0 (+)
(build (\n c -> fold n (c . sqr) xs))

Because the intermediate list (constructed by build) is immedi-
ately consumed by a fold, it is reasonable to expect that the list
can be eliminated. In fact it can, using the build-fold fusion rule
fold n c (build g) = g n c:

sumSqs = \xs -> (\n c. fold n (c . sqr) xs) 0 (+)
= fold 0 ((+) . sqr)

Here it is easy to see that no intermediate sub-list is produced.
Fold-build fusion has been used to great effect in modern func-

tional programming languages such as Haskell, and Grust proposed
it as the primary optimization technique for the MCC, but there are
some common situations in which it does not apply. Here the tradi-
tional examples is append (written as an infix ++):

ys ++ xs = fold ys Cons xs

Because append is a list producer, to enable fusion we would like
to write it in terms of build. Without doing so, for example, we
cannot apply fold-build fusion to the following:

fold z f (map g xs ++ ys)

However, writing append using build is impossible, as the follow-
ing naive attempt shows:

ys ++ xs = build (\n c -> fold ys Cons xs)

This code is incorrect, because ys is a list, but needs to be element
type. The problem is also apparent in trying to represent Cons as a
build:

ourcons x xs = build (\n c -> c x s)

Of course, we can introduce an additional fold:

xs ++ ys = build (\n c -> fold (fold n c ys) c xs)
ourcons x xs = build (\n c -> c x (fold n x xs))

However, as Gill shows [14], it is sometimes impossible to re-
move these additional folds, and they introduce significant over-
head. Thus Gill introduced a generalization of the build operation,
called augment, for lists in particular:

augment : (forall b. a -> (a -> b -> b) -> b)
-> List a -> List a

augment g xs = g xs Cons

The only difference between build and augment is that augment
takes an additional argument xs which it uses in place of Nil:

build g = augment g Nil

We can now write our two earlier problematic definitions using
augment instead of build:

ys ++ xs = augment (\n c -> fold n c xs) ys
ourcons x xs = augment (\n c -> c x s) xs

Fold-augment fusion is then given by the equation:

fold z k (augment g h) = g k (fold z k h)

Our earlier example can now be fused, and the fold-build rule is
a special case of this rule. Fold-augment fusion is quite useful for
collection processing, as we would expect operations such as ap-
pend to abound. Unfortunately, Gill’s definition of augment was
only defined for lists, and hence it cannot be used with arbitrary
collections, making it unsuitable as an optimization technique for
an intermediate form such as ours. Fortunately, in 2005 Ghani et
al were able to show how to generically define an augment opera-
tion for parameterized monads over polynomial datatypes [13]. A
parameterized monad is a type class with three operations:

class PMonad pm where
preturn :: a -> pm a c
(>>!) :: pm a c -> (a -> pm b c) -> pm b c
pmap :: (c -> d) -> pm a c -> pm a d

Obeying five laws:

>>! preturn = id
(>>! g) . preturn = g
(>>! (>>! g) . j) = (>>! g) . (>>! j)
pmap g . preturn = preturn
pmap g. (>>! j) = (>>! (pmap g . j)) . pmap g

A parameterized monad then induces a monad in a canonical way.
This induced monad then has a bind operation which is interdefine-
able with augment:

augment g k = bind (build g) k

This is important because it allows fusion to apply to programs of
the form bind (bind x f) g, which arise (by associativity) from
a fairly typical programming patterns (like comprehensions) of the
form

do x <- X
y <- Y
return (f x y)

In [13], Ghani further argues that fusion of this form is the best
possible.

4. Aggregation
Whereas collection monads and monad comprehensions as de-
scribed in the overview are likely to be well-known to the func-
tional programmer, monad algebras and comprehensions over
them probably are not. However, they are quite useful for col-
lection processing [21]. Our interest in them is that they allow us to
express aggregation operations using comprehension notation, and
moreover, they can be treated in a uniform way using the optimiza-
tion techniques developed in the next section. Although they can be
defined in several different ways, the most straightforward is that a
monad algebra is an operation agg : Mt → t for a specific t that
obeys certain equations. For example, adding up all the numbers in
a list is a monad algebra for the list monad, but adding up all the
numbers in a set is not an algebra for the set monad – see [21] for
details. The equations that must be respected are

agg . return = id
agg . (fmap agg) = agg . join

Here fmap and join have their standard definitions in terms of
return and bind:

(fmap f) m = bind m (\x -> return (f x))
join n = bind n id

Note that monadic join (at each type) is a special case of agg.
The “Kleisli form” of a monad algebra is an operation (family)
loop : M a → (a → b) → b; in this form, it is easy to see that
monadic bind (at each type) is a special case of loop, by taking
b = M c. This means that every monad has a canonical, “free”
monad algebra. This is useful for us because it means that we can
re-use our monad comprehension notation, but when translating
into folds, we can translate either into the monad’s bind operation
or a more general monad algebra operation loop.

This can be made concrete as follows. Write <-- to indicate
loop for the summing of a list monad algebra. Then to sum a list
using a comprehension, we simply write:

do x <-- X
x

To sum a list after adding 1 to each element, we write

do x <-- X
x + 1

To sum every pairwise element combination of two lists, we write

do x <-- X
y <-- Y
x + y

Writing aggregations as comprehensions takes some getting used
to, and in particular the fact that there can be many monad algebras
for a particular monad at a particular type makes indicating which
one is intended a verbose endeavor, one for which we do not
have a good solution for as yet. Other example monad algebras
include logical and and or for sets of booleans, max and min
for sets of integers (assuming that positive and negative infinity
are integers), sum for bags of integers, and string concatenation
for lists of strings. The monad algebras must also posses a zero-
like operation that behaves correctly with respect to the underlying
monad’s zero.

Remark. Monads bear a resemblance to Monoids; in Haskell,
monoids form a typeclass:

class Monoid m where
mempty :: m
mappend :: m -> m -> m

In addition, mempty must be a left and right identity for mappend.
Containers (as well as other things, like the integers) often form
monoids; for example:

instance Monoid [a] where
mempty = []
mappend = (++)

Monads with a zero and a plus are also monoids (hence, monads
have more structure):

instance MonadPlus m => Monoid (m a) where
mempty = mzero
mappend = mplus

Importantly, monads and monoids operate at different levels:
a monad is a type constructor (of kind type → type whereas a
Monoid is a type (of kind type). Fegaras and Maier [11] fabricated
a query calculus known as the monoid comprehension calculus
based on comprehension notation and monoid-homomorphisms.
We are biased towards monads because our optimization tech-
niques are monad-specific, but the exact connection between the
monoid and monad comprehension calculi is not well-understood,
and is an area for future work.

5. Constraints
At scale, the particular properties of the data at hand become impor-
tant [4]. This phenomenon is readily apparent in relational database
systems, where properties such as key constraints or join decom-
positions are exploited by a query optimizer. For example [1], con-
sider the following relational query (i.e., in the set monad):

MoviesBig ::= for (m1 inMovies) (m2 inMovies)

wherem1.title = m2.title

return (m1.director,m2.actor)

This query returns (a set of) tuples (d, a) where a acted in a
movie directed by d. A naive implementation of this query will
require a join. However, when Movies satisfies the the functional
dependency title → director (meaning that if (director :

d, title : t, actor : a) and (director : d′, title : t′, actor :
a′) are records inMovies such that t = t′, then d = d′), this query
is equivalent to

MoviesSmall ::= for (m inMovies)

return (m.director,m.actor)

which can be evaluated without a join. (Note that if Movies did
not satisfy the functional dependency, the equivalence would not
necessarily hold.)

Of course, knowing that the functional dependency holds, a pro-
grammer might simply write the optimized query to begin with. But
constraints are not always known at compile time, such as when
collections are indexed on-the-fly. Moreover, people are not always
the programmers: information integration systems such as Clio [17]
automatically generate large amounts of code. The significant, po-
tentially order-of-magnitude speed-ups enabled by optimizations
of this form are well-documented in the literature and applied in
commercial databases such as DB2 [18].

So, our intermediate form must provide a way to express con-
straints. Moreover, constraints should function as additional re-
write rules, over comprehensions, during optimization [1]. In this
section we show how to do so. The basic idea is that constraints
should have the following syntactic form, called embedded, impli-
cational dependencies [1].

C ::= forall
−−−−−→
(x inX) where P (−→x)

exists
−−−−−→
(y in Y) where B(−→x ,−→y)

The functional dependency from our example is written:

forall (x inMovies) (y inMovies)

where x.title = y.title

exists

where x.director = y.director

Unlike conjunctive queries, which have a straightforward in-
terpretation in a monad with zero, the meaning of an embedded
dependency is less clear. We will give the meaning of constraint
C using a pair of queries called the front and back of C. We
write L(−→x) to indicate a record capturing the variables −→x ; e.g.,
(x1 : x1, . . . , xN : xN). The front and back are, respectively :

front(C) ::= for
−−−−−→
(x inX)

where P (−→x)

return L(−→x)

back(C) ::= for
−−−−−→
(x inX)

−−−−−→
(y in Y)

where P (−→x) ∧B(−→x ,−→y)
return L(−→x)

When these two queries are equal, the constraint holds. This defi-
nition is counter-intuitive, but does match the expected meaning of
constraints in the set monad.

5.1 Reasoning about Comprehensions using Constraints
Our eventual goal is to use constraints to re-write comprehensions,
using a particular technique known as the chase. To do so requires
a few more definitions.

A homomorphism between queries, h : Q1 → Q2

Q1 ::= for
−−−−−−→
(v1 in V1) where P1(

−→v1) R1(
−→v1)

Q2 ::= for
−−−−−−→
(v2 in V2) where P2(

−→v2) R2(
−→v2)

is a substitution mapping the for -bound variables of Q1 (namely,−→v1) to the for -bound variables of Q2 (namely, −→v2) that preserves
the structure of Q1 in the sense that

• Each (h(v1i) in V1i) appears in
−−−−−−→
(v2 in V2) (that is, the image

of each generator in Q1 is found in the generators of Q2).

• P1(h(
−→v1)) is entailed by P2(

−→v2) (that is, the images of the
conjuncts in Q1 are a consequence of the conjuncts in Q2).

• R1(h(
−→v1)) = R2(

−→v2), under the equalities in P2 (that is, theR
clauses are equivalent).

For arbitrary predicates P1 and P2 and arbitrary expressionsR1

and R2, finding homomorphisms is undecidable. However, when
the queries are path-conjunctive, finding homomorphisms is NP-
hard. Moreover, in this case there are practical, sound heuristics [9].

In the set monad, homomorphisms are useful because the ex-
istence of a homomorphism A → B implies that for every I ,
B(I) ⊆ A(I). In commutative, idempotent monads (which obey
some additional structure, which we define at the end of this sec-
tion) the existence of a homomorphism from B to A and from A
to B implies that A and B are equal. We will use this property
to show how queries that are interpreted in such monads can be
re-written using constraints, using a core technique from database
theory called the chase. Let

C ::= forall
−−−−−→
(x inX) where P (−→x)

exists
−−−−−→
(y in Y) where B(−→x ,−→y)

Q ::= for
−−−−−→
(v in V) where O(−→v) R(−→v)

and suppose there exists a homomorphism h : front(C) → Q.
Then a chase step is to rewrite Q into chase(Q,C) by adding the
image of the existential part of C:

chase(Q,C) ::= for
−−−−−→
(v in V)

−−−−−→
(y in Y)

where O(−→v) ∧B(
−−→
h(x),−→y)

R(−→v)

The chase itself is to repeatedly rewriteQ by looking for homo-
morphisms from C:

Q chase(Q,C) chase(chase(Q,C), C) . . .

The chase will converge to a unique fixed point [9], provided
that 1) C is acyclic and 2) we do not take a chase step when
there is a homomorphism extending h from chase(Q,C) to Q.
The definition of acyclicity is somewhat technical and we omit it.

What does the chase buy us? It provides a way to reason about
queries under constraints. Consider our movies query again. To get
from MoviesBig to MoviesSmall, a process known as tableaux
minimization [9], we apply the following algorithm. First, we look
for homomorphisms from our constraint to MoviesBig. We see
that there is one, and hence the chase applies. Thus, we may re-
write MoviesBig into a so-called “universal plan”:

U ::= for (m1 inMovies) (m2 inMovies)

wherem1.title = m2.title ∧
m1.director = m2.director

return (m1.director,m2.actor)

Now, to obtain MoviesSmall, we remove generators from U
to obtain a candidate query q and try to show that chase(q, C) is
equivalent to U by looking for homomorphisms in both directions.
This process of query minimization is actually complete for finding
minimal queries in the set monad [9]. Note that although we have
been using monad comprehensions for the example in this section,
all the results apply to monad algebra comprehensions [23].

5.2 Monads for which the chase is sound
The re-writing procedure outlined above is only sound for monads
with zero that have additional structure, which include sets and
probability distributions. The additional axioms we require are:

• Commutativity. We require the ability to permute generators
as we please.

for
−−−−−→
(u in U)

−−−−−→
(v in V)

X(−→u ,−→v)
=

for
−−−−−→
(v in V)

−−−−−→
(u in U)

X(−→u ,−→v)

• Logicality. We require that exists behave “as it should” with
respect to for . Suppose

−−−−−→
(a in V) ⊆

−−−−−→
(u in U). Then

for
−−−−−→
(u in U)

where P (−→u)

return E(−→u)

=

for
−−−−−→
(u in U)

where P (−→u) ∧

exists
−−−−−→
(v in V) where −→v = −→a

return E(−→u)

• Idempotency. We require that when −→a /∈ fv(E),

if exists
−−−−−→
(a in A)

where P (−→a)
then return E

else zero

=

for
−−−−−→
(a in A)

where P (−→a)
return E

• Distinguishability. We require that zero be distinguished from
return.

return x 6= zero

• Uniformity We require that front(C) = back(C) implies
front(R,C) = back(R,C) for any R. That is,

for
−−−−−→
(u in U)

where P (−→u)

return L(−→u)

=

for
−−−−−→
(u in U)

−−−−−→
(v in V)

where P (−→u) ∧B(−→u ,−→v)
return L(−→u)

implies, for any X ,

for
−−−−−→
(u in U)

where P (−→u)

X(−→u)

=

for
−−−−−→
(u in U)

−−−−−→
(v in V)

where P (−→u) ∧B(−→u ,−→v)
X(−→u)

6. Proofs
In the preceding sections we have tried to indicate the places where
a particular property is required to hold but in general there is
no way for a compiler to prove it. Verification is needed in the
following places:

• At monad, monad algebra, commutative idempotent monad,
and parameterized monad definitions, to verify that particular
laws hold.

• At equivalence relation definitions, to verify that the provided
definition is in fact an equivalence relation.

• At each use of fold or build, to verify that the operations
respect the underlying equivalence relation.

In addition, users can write assert and assume statements to
trigger the explicit generation of an obligation or the addition of a
constraint known to hold a priori. This mechanism can only be used
with the constraints in the previous section; its purpose is to alert
the compiler that additional information is available with which to
re-write comprehensions. Here is an example, where we assume
a primitive for reading a file as a set, and assuming Haskell-ish
monadic IO:

main : IO ()
main = do x <- readSet foo

assume C(x) in
do print Q(x)

assert C’(Q(x)) in
....

Here C and C′ are constraints, and Q a query. Generation of
obligations stemming from assertions or uses of fold and build
is done by traversing the syntax, placing assumptions in a context.
Free variables are universally quantified in the emitted Coq code.
This means that our obligations are flow insensitive, and hence may
not be provable even though they are “true”. For greater precision,
we have considered a shallow embedding of our language into Coq,
but leave that for future work.

A particular challenge here is coping with extensible, equated
up-to-permutation records in Coq. That is, we are translating from
a system of qualified types with such records to Coq, which is
dependently-typed but lacks such records. During translation, the
qualifiers in our language become proof objects guaranteeing, for
example, that a projection operation cannot fail. The construction
of these objects, we believe, can be performed as part of type-
inference, based on the idea of a “principal evidence-passing trans-
lation” [12].

7. Conclusion and Future Work
We have proposed an intermediate form based on monad-algebra
comprehensions (to represent queries), setoids over polynomial
datatypes (to represent data), and folds (to represent computation)
suitable for use in collection processing. Such an intermediate form
captures, in a uniform way, large fragments of many recent large-
scale collection processing languages such as MapReduce, PIG,
DryadLINQ, and Data Parallel Haskell. Although we are not the
first to propose such an intermediate form, we show how to solve
four key problems inherent in the naive approach by applying re-
cent work from both programming language theory and relational
database theory. First, we show how fold fusion can be extended
to exploit the monadic structure of queries. Second, we show how
comprehensions themselves can be extended to allow for aggrega-
tion. Third, we show how to embed constraints into our interme-
diate form and how such constraints can be used, for example, to
minimize the number of bind operations in a monad comprehen-
sion. Finally, we show how to emit proof obligations from our lan-
guage, so as to ensure that each program is sound with respect to
required properties. Taken together, these improvements pave the
way for a compiler based on this intermediate form, which we are
currently developing.

References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.
[2] R. Bird and O. de Moor. Algebra of programming. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1997.

[3] G. E. Blelloch and J. Greiner. A provable time and space efficient
implementation of nesl. In ICFP, pages 213–225, 1996.

[4] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Compre-
hension syntax. SIGMOD Rec., 23(1):87–96, 1994.

[5] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of pro-
gramming with complex objects and collection types. Theor. Comput.
Sci., 149(1):3–48, 1995.

[6] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of pro-
gramming with complex objects and collection types. Theoretical
Computer Science, 149:3–48, 1995.

[7] A. Bunkenburg. The boom hierarchy. In Proc. of the Workshop on
Functional Programming, Workshops in Computing, 1993.

[8] M. M. T. Chakravarty, R. Leshchinskiy, S. P. Jones, G. Keller, and
S. Marlow. Data parallel haskell: a status report. In DAMP 2007.

[9] A. Deutsch, L. Popa, and V. Tannen. Query reformulation with
constraints. SIGMOD Rec., 35:65–73, March 2006.

[10] E. A. et al. The Fortress Language Specification. Technical report,
Sun Microsystems, Inc., 2007.

[11] L. Fegaras and D. Maier. Optimizing object queries using an effective
calculus. ACM Trans. Database Syst., 25(4):457–516, 2000.

[12] B. R. Gaster and M. P. Jones. A polymorphic type system for ex-
tensible records and variants. Technical Report NOTTCS-TR-96-3,
Department of CS, University of Nottingham, November 1996.

[13] N. Ghani and P. Johann. Monadic augment and generalised short cut
fusion. J. Funct. Program., 17:731–776, November 2007.

[14] A. J. Gill. Cheap deforestation for non-strict functional languages,
1996.

[15] T. Grust. Comprehending Queries. Universitat Konstanz, Ph.D.
Thesis, 1999.

[16] T. Grust. Monad Comprehensions. A Versatile Representation for
Queries. In The Functional Approach to Data Management, P.M.D.
Gray and L. Kerschberg and P.J.H. King and A. Poulovassilis (eds.).
Springer Verlag, 2003.

[17] L. M. Haas, M. A. Hernndez, L. Popa, M. Roth, and H. Ho. Clio grows
up: From research prototype to industrial tool. In SIGMOD 05.

[18] Q. heng, J. Gryz, F. Koo, T. Y. C. Leung, L. Liu, X. Qian, and
K. B. Schiefer. Implementation of two semantic query optimization
techniques in db2 universal database. VLDB ’99, 1999.

[19] G. Hutton. A tutorial on the universality and expressiveness of fold. J.
Funct. Program., 9(4):355–372, 1999.

[20] M. Isard and Y. Yu. Distributed data-parallel computing using a high-
level programming language. In SIGMOD ’09.

[21] S. K. Lellahi and V. Tannen. A calculus for collections and aggregates.
In CTCS ’97, pages 261–280, London, UK, 1997. Springer-Verlag.

[22] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
latin: a not-so-foreign language for data processing. In SIGMOD 08.

[23] L. Popa and V. Tannen. An equational chase for path-conjunctive
queries, constraints, and views. In ICDT 99.

[24] J. T. Schwartz, R. B. Dewar, E. Schonberg, and E. Dubinsky. Pro-
gramming with sets; an introduction to SETL. Springer-Verlag New
York, Inc., New York, NY, USA, 1986.

[25] M. Sozeau. A New Look at Generalized Rewriting in Type Theory.
Journal of Formalized Reasoning, 2(1):41–62, December 2009.

[26] V. Tannen, P. Buneman, and L. Wong. Naturally embedded query
languages. ICDT ’92, pages 140–154, London, UK, 1992. Springer-
Verlag.

[27] P. Wadler. Theorems for free! In Proceedings 4th Int. Conf. on Funct.
Prog. Languages and Computer Arch., FPCA’89, London, UK, 11–13
Sept 1989, pages 347–359. ACM Press, New York, 1989.

[28] L. Wong. Querying nested collections. PhD thesis, Philadelphia, PA,
USA, 1994. Supervisor-Buneman, Peter.

[29] L. Wong. Kleisli, a functional query system. J. Funct. Prog, 10, 1998.
[30] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-reduce-

merge: simplified relational data processing on large clusters. In
SIGMOD ’07, pages 1029–1040, 2007.

	Introduction
	Motivation
	Contributions
	Related Work
	Outline

	Overview
	Quotients
	Collection Monads
	Comprehensions and Queries

	Fusion
	Aggregation
	Constraints
	Reasoning about Comprehensions using Constraints
	Monads for which the chase is sound

	Proofs
	Conclusion and Future Work

