
Mapping Dependence

Ryan Wisnesky

TR-09-09

Computer Science Group
Harvard University

Cambridge, Massachusetts

Mapping Dependence

Ryan Wisnesky

Harvard University
ryan@cs.harvard.edu

September 23, 2009

Abstract. We describe DMSL, a domain specific language for defining
schema mappings. Schema mappings are assertions in carefully crafted
logics that express constraints between data represented in different for-
mats, including XML and relational schema. DMSL is suitable for repre-
senting programs over mappings, which, for instance, occur in dataflow
graphs of mappings. DMSL programs of mapping type are statically
guaranteed by a qualified type system to denote satisfiable constraints;
the principal polymorphic schemas of source and target solution data
instances are automatically inferred. DMSL implements a variety of op-
erations over mappings (e.g., composition) by interfacing with IBM’s
Clio Mapping Engine.

1 Introduction

We describe DMSL, a domain specific language for defining schema mappings.
Schema mappings are assertions in carefully crafted logics that express con-
straints between data represented in different formats, including XML and rela-
tional schema. These expressions are often created automatically by a “mapping
generator” that uses as input a set of source and target schemas and a set of
“correspondences” between source and target schema elements [39,37,5]. Figure 1
shows IBM’s Clio mapping tool [27] in action.

In this screenshot, the user has loaded source and target XML schemas and
has entered a number of correspondences between atomic-level elements of both
schemas, indicated by the blue lines. Clio generates a set of mapping expressions
from this simple input of schemas and correspondences. The generated map-
ping expressions capture the meaning of the correspondences as a constraint
between source and target data instances conforming to the schema: the gen-
erated mapping expressions can be converted into a semantics-preserving query
that transforms data from the source schema to the target schema. Queries can
be generated in a number of target languages (SQL, XSLT, etc). Figure 2 illus-
trates Clio’s architecture.

Mapping tools are typically used when semantics-preserving data transforma-
tion is needed but users cannot or do not want to write queries themselves [39];
for instance, in a business context where non-programmers need to migrate infor-
mation between departmental databases. Moreover, it can be difficult to man-
ually create semantics preserving queries in the presence of schema integrity

2

Fig. 1. A schema mapping in Clio

constraints (e.g. foreign keys). In Figure 1, foreign key constraints are indicated
by dotted lines.

IBM [27], Microsoft [3], BEA [6], and others are building an ecosystem of
tools around schema mappings. Indeed, mappings are used as building blocks for
more complex data transformations. Models and semantics of schema mappings
for data exchange [15], and operations over mappings [38][16][18] have been
extensively studied within the database and information integration community.

1.1 Motivation

Mapping languages in the Clio tradition (e.g., [22]) cannot express mappings
that depend on other mappings. That is, they cannot express functions over
mappings. Such dependence occurs, for instance, when mappings are used within
larger dataflow systems [14], where we may need to express mappings that de-
pend on mappings defined earlier in the flow. Such a scenario is illustrated in
Figure 3.

Dependence also occurs in other situations. In semantic adapatation [47],
mappings are adapted to changes in schema by composition with a mapping
from the old to new schema; an adapted mapping can be represented as a se-
quence of mapping compositions that depend on the original mapping. When
the initial mapping changes, we would like to propagate the changes through
the entire sequence to obtain a new, adapted mapping. Thus it can be conve-

3

Fig. 2. Clio Architecture

nient to represent the sequence of composed mappings as a function from the
initial mapping to the adapted mapping.

Ideally, any mechanism for dependence should rule out invalid dependencies.
DMSL uses syntactic substitution to express functions over mappings, and we de-
fine a strong static typing discipline to ensure the well-formedness of substitution
instances. This discipline ensures that DMSL expressions of mapping type denote
satisfiable constraints, and allows DMSL mappings to be polymorphic (usable
with many source and target schemas); the language of [22] is monomorphic.
Such a discipline also helps alleviate the impedance mismatches [10] involved
when integrating mappings with other systems.

Work on typed SQL combinators has helped address similar challenges when
exchanging purely relational data using Haskell [35] and C] [12]. Our study of a
formalism for transforming nested data thus follows the tradition of embedding
relational algebra into Haskell [44] and C]-LINQ [36]. Unlike relational algebra,
however, the mapping language contains binding constructs and has a declarative
semantics. In addition, users typically interact with mappings graphically as
lines/correspondences, as in Figure 1, rather than as text (e.g. SQL); DMSL is
thus designed for mapping systems, rather than human programmers. It is an
intermediate form usable by mapping engines for representing programs over
mappings.

4

Fig. 3. Mapping Dependence

1.2 Contributions

We present an embedding of the Clio nested mapping language [22] into a sys-
tem of qualified types [24], exploiting λ as a type-safe mechanism for expressing
mapping dependence. Mappings are defined using a basis of primitives, whose se-
mantics are given by mapping transformations implemented in the Clio Mapping
Engine. DMSL expressions of mapping type are statically guaranteed to normal-
ize into satisfiable constraints. The principal polymorphic schemas of source and
target solution data instances satisfying the constraints are automatically in-
ferred.

2 Overview

2.1 Nested Mappings

Mapping expressions capture the meaning of correspondences/lines between schema
as constraints between source and target data instances. We will be using the
nested mapping formalism based on [22], which is implemented in Clio. (Other
formalisms exist, like [38]). Nested mapping expressions resemble formulae of an
enriched set-theory, like

∀student ∈ src.students, ∃employee ∈ dst.employees

s.t. student.fullname = employee.name ∧
∀s of teaching from student.status s.t. s = employee.job

but with syntactic restrictions that ensure solution data instances can always be
computed. We defer their exact definition to the end of the section.

5

Mapping expressions are typically given a set theoretic semantics, and in
general there may be many or no data instances that satisfy a set of mapping
expressions. A precise semantics of canonical solutions is given in [15]; informally,
a solution to the above mapping expression is

(students : {(fullname : John Doe,

status : {(teaching : CS100), (taking : CS200)})})

(employees : {(name : John Doe, job : CS100, id : 1),
(name : Jane Doe, job : CS101, id : 2)})

Fields not mentioned in the constraints (like id) may appear in solutions.
Not all mapping expressions can be represented as correspondences/lines (e.g.
solutions requiring Cartesian product, although all correspondences/lines can be
represented as sets of mapping expressions.

2.2 NR Schema

Nested mapping expressions obey an implicit typing discipline, and the shape
of canonical data instances can be described by NR schema, which consist of
records, sets of records, atomic types, and sets of variant (choice) types:

row ::= LM | LL : schema, rowM
schema ::= A atomic

| [row] record of
| {row} set of record of
| 〈row〉 set of choice of

Here A represents atomic base types and L represents labels. We additionally
require that rows contain only one instance of any label name, and we equate
rows that are equivalent up to permutation of record label name and schema
pairs. Note that these additional restrictions are not captured in NR schema
syntax. NR schema corresponding to the above solution are, for any a, b ∈ A
and c ∈ schema, using abbreviated notation:

[Lstudents : {Lfullname : a, status : 〈Lteaching : b, taking : cM〉M}M]
[Lemployees : {Lname : a, job : b, id : NatM}M]

NR schema are expressive enough to capture both relational and XML schemas.
Clio, for instance, converts XML schemas into NR schemas internally. In fact,
XML schemas, not NR schemas, are displayed in Figure 1.

6

Foreign key constraints are sometimes considered to be part of a schema
definition. For instance, XSD definitions allow key constraints as part of XML
schema. We treat such constraints as mappings whose source and target roots
coincide, rather than as part of NR schema.

2.3 Introduction to DMSL

In DMSL, the example mapping is written

do src← rootSRC

dst← rootDST

student← setGen src.students

employee← setGen dst.employees

eq student.fullname employee.name

nest (do s← chcGenteaching student.status

eq s employee.job)

DMSL supports a monadic style of programming [32], and DMSL mapping
expressions often resemble set comprehensions [26]. The exact meaning of this
type will be made clear in Section 4, but the inferred type of this DMSL expres-
sion is

c \ teaching, d \ (fullname, status), e \ students, f \ (name, job), g \ employees,

Atomic(a, b), SchemaRow(c, d, e, f, g)⇒
Map Lstudents : {Lfullname : a, status : 〈Lteaching : b, cM〉, dM}, eM

Lemployees : {Lname : a, job : b, fM}, gM ()

The three key features of this type are

– a set of lacks qualifiers, the infix backslashes, which ensure that labels occur
uniquely in records,

– Atomic and SchemaRow qualifiers, that express constraints on the types of
solution data instances, and

– polymorphic row variables, which express that solution instances are free to
have extra structure that is not “required” by the constraints

A basic result from our current work on mapping polymorphism is that in-
habitants of such types type denote satisfiable constraints (i.e. the mapping has
a solution). In this paper we will focus on the design of DMSL itself and only
point out connections to mapping semantics.

7

It is easy to write functions that manipulate mappings. For instance, we can
abstract the nesting:

m x = do src← rootSRC

dst← rootDST

student← setGen src.students

employee← setGen dst.employees

eq student.fullname employee.name

nest (x student employee)

The mapping becomes

m (λstudent. λemployee. do s← chcGenteaching student.status

eq s employee.job)

The explicit passing of mapping expressions is hidden by the monadic style;
nevertheless, the type of m expresses that it may only be used to mutate map-
pings that, for instance, have name labels:

m :: . . .⇒
(
Var [Lfullname : a, dM]→ Var [Lname : a, bM]→

Map Lstudents : {Lfullname : a, cM}, eM Lemployees : {Lname : a, fM}, gM
)
→

Map Lstudents : {Lfullname : a, cM}, eM Lemployees : {Lname : a, fM}, gM

The type constructor Map is a “mapping building” monad, which we have
implemented using the Clio mapping engine. This allows us access to sophisti-
cated operations over mappings, like composition, which we can use alongside
DMSL’s built in features. For instance, we can define conditional composition:

f :: SchemaRow(a, b, c)⇒ Bool→ Map a b→ Map b c→ Map b c→ Map a c

f x m1 m2 m3 = m1 ◦ if x then m2 else m3

2.4 Formal Mapping Expressions

The mapping language we are considering in this paper is based on [22], which
is implemented in Clio. Mapping expressions are given by the grammar

M ::= ∀ v1 B P1, . . . , vn B Pn

∃ vn+1 B Pn+1, . . . , vm B Pm

s.t. (E1 ∧ ... ∧ Ej ∧M1 ∧ · · · ∧Mk)
P ::= v | Src | Dst | P.L
E ::= P = P

B ::= ∈ | of L from

A mapping expression M contains three main components: the ∀ clause, the
∃ clause, and the s.t. clause (sometimes called the where clause). The ∀ clause

8

contains a list of variable bindings of the form vi B Ti called generators. Each Ti

is a path expression that resolves to a unique set of record or set of choice schema
element. B represents binders for set (in) and choice (of) elimination, where the
label for choice indicates which branch is being followed. (Multiple mappings are
required to handle all branches of a choice. This is a different mechanism for
eliminating choice than is found in most programming languages [41]). Variables
are visible to other parts of the mapping expression from the point they are
declared. The ∃ clause is similar to the ∀ clause.

Path expressions P are constructed using variables and the dot operator for
projecting into a label. We distinguish schema roots: Src (for the source-side
root) and Dst (for the target-side root). We allow generator lists to be empty.
The formalism extends easily to handle multiple source and target roots.

The s.t. clause is a conjunction of equalities over the variables bound in the
∀ and ∃ clauses (the E1∧· · ·∧Ej part), plus optional nested mapping expressions
(the M1 ∧ · · · ∧Mk). The equalities E can be divided into source-side equalities
(those that only use variables declared in ∀ clauses), target-side equalities (those
that only use variables declared in ∃ clauses), and source-to-target equalities.
Source-side equalities represent join and filtering conditions that must apply
to the source data instance. Target-side equalities represent target constraints
that hold when the source data is converted into target data; they are usually
used to force the correct generation of target surrogate key and foreign key
values. Finally, source-to-target equalities are the value correspondences that
encode how source atomic values are converted into target values. This mapping
language can easily be extended to handle predicates other than equality and to
include atomic function constants. These additions are important for closing the
mapping expressions under composition; details are discussed in Section 5.3.

A mapping expressionM can recursively include zero or more nested mapping
expressions M1, . . . ,Mk in the s.t. clause. Variables defined in generators of M
can be used in path expressions of any nested mapping. For instance, the s.t.
clause of the nested mappings have access to all variables declared in M . We
do not care about the order of nested mappings or equalities. Finally, we must
disallow using a variable bound by a ∀ in an ∃ generator path, and vice versa,
which is not captured by the grammar.

The language of [22] also includes “grouping conditions,” which allow the
fine tuning of solution data instances. We omit grouping conditions from our
mapping language, although it is possible to add them (see Section 5.3).

3 DMSL

DMSL is a modification of the system of qualified types in [24]. We discuss the
differences between the two systems in Section 6; in this section, we describe
DMSL, an implicitly typed λ calculus:

E ::= v | c | EE | λx.E | let x = E in E

We will define constants c beginning in Section 4. DMSL’s type system has
kinds

9

κ ::= ∗ the kind of all types
| row the kind of all rows
| κ→ κ function kinds

A type expression with row kind (a row expression) represents a list of label to
type bindings, much like an NR schema row. They are “extensible,” in the same
way, as can be seen from the empty row and row extension type constructors:

LM :: row empty row
Ll : −,−M :: ∗ → row → row row extension, for each l
[] :: row → ∗ record of
{} :: row → ∗ set of record of
〈〉 :: row → ∗ set of choice of
Map :: row → row → ∗ mapping
Var :: ∗ → ∗ mapping variable
→ :: ∗ → ∗ → ∗ function space

The row extension type constructor is parameterized by a label; in DMSL,
labels are not first class [33]. Recall that we consider row expressions that differ
only in the row-extension order of their label and type pairs to be equal. For
instance,

Ll1 : t1, l2 : t2M = Ll2 : t2, l1 : t1M

To support this notion of equality the unification algorithm of the type language
must be extended; details are found in [24].

To enforce that rows only contain single occurrences of labels, we will make
use of qualified types. Hence DMSL’s language of types distinguishes between
simple types τ , described above; and qualified types ρ, which make use of pred-
icates π; and type schemes or polymorphic types σ:

π ::= (σ :: row) \ l | Atomic (σ :: ∗) |
SchemaRow (σ :: row) | SchemaType (σ :: ∗)

σ ::= ρ | ∀α :: ∗. σ | ∀α :: row. σ
ρ ::= τ | π ⇒ ρ

The lacks predicate, written r \ l for row expression r and label l, indicates
a requirement that a row expression not contain a given label. For instance, the
type of our path forming primitive (discussed in Section 4.2) is:

.l :: r \ l⇒ [Ll : a, rM]→ a

Here we obey the convention that free type variables are implicitly universally
quantified. As with the type constructor Ll : −,−M, the dot operator .l is indexed
by a label name l because DMSL labels are not first class.

The other predicates, Atomic, SchemaRow, and SchemaType, let us shallowly
embed NR schema into types. They capture the more restrictive nature of schema
over types; for instance, function types are not allowed in schema. Intuitively,

10

any type in SchemaType is expressible as an NR schema, and vice-versa. The
formal predicate entailment relation for DMSL is

P, π π P LM \ l
P r \ l l 6= l′

P Ll′ : τ, rM \ l
τ ∈ A

P Atomic τ

P SchemaRow τ

P SchemaType [τ]
P SchemaRow τ

P SchemaType {τ}
P SchemaRow τ

P SchemaType 〈τ〉

P Atomic τ

P SchemaType τ
P SchemaRow LM

P SchemaType τ P SchemaRow r

P SchemaRow Ll : τ, rM

The typing rules we are using are given in Figure 4.

(const)

P | A ` c : σc

(var)

(x : σ) ∈ A
P | A ` x : σ

(→ E)

P | A ` E : τ ′ → τ P | A ` F : τ ′

P | A ` EF : τ

(→ I)

P | A , x : τ ′ ` E : τ

P | A ` λx.E : τ ′ → τ

(⇒ E)

P | A ` E : π ⇒ ρ P π

P | A ` E : ρ

(⇒ I)

P, π |A ` E : ρ

P | A ` E : π ⇒ ρ

(∀E)

P | A ` E : ∀α.σ
P | A ` E : σ(α 7→ τ)

(∀I)
P | A ` E : σ α /∈ fv(A) ∪ fv(P)

P | A ` E : ∀α. σ

(let)

P | A ` E : σ Q | A, x : σ ` F : τ

P ∪Q | A ` let x = E in F : τ

Fig. 4. The theory of qualified types [24]

A judgment P | A ` E : σ asserts that E has type σ in context A, provided P
is derivable. The type inference algorithm described in [24] calculates a principal
satisfiable type for an expression under these rules, which we use in our DMSL
implementation.

DMSL supports datatype definitions, which we have omitted from this section
for simplicity. They can be added in a straightforward way, and we use unit
(written ()) in our mapping combinator types. The type constructors in this

11

section (like []) are not regular algebraic datatypes; our implementation treats
them specially.

4 Mapping Combinators

In this section we describe our variable and path representation, give types for
DMSL’s primitive mapping combinators and describe their Clio implementation.
More sophisticated operations are discussed in the next section.

4.1 The Mapping Monad

We begin with constants representing schema roots:

rootSRC :: SchemaRow (s, t)⇒ Map s t (Var [s])
rootDST :: SchemaRow (s, t)⇒ Map s t (Var [t])

The type constructor Map is parameterized by two row expressions that give
the schema of the source and target solution data instances: the solution con-
forms to ([s], [t]). The return value of these constants are Vars that refer to
schema roots. That the same type variable (either s or t) appears in both the
return type and in one of the parameterized records is crucial to propagating
unification constraints generated by uses of other combinators back into the
structure of the entire solution instance.

We are not limited to using a single source and target; rather than having
Map parameterized by two rows, we can parameterize it by a row of generator
root labels and corresponding schema; here,

Map′ LSRC : s,DST : tM

We will use single source and target for simplicity. The two constants are the
base cases of the introduction rules for Var.

The mapping monad is implemented as, essentially, a state monad consisting
of a native Clio mapping expression and a fresh variable index. The combinators
either update the state by rewriting mapping syntax themselves or by invoking
the Clio Mapping Engine. DMSL can both normalize expressions of mapping
type into conventional Clio mappings, and convert conventional Clio mappings
into DMSL.

4.2 Paths

In the nested mapping language, a path is simply a sequence of record projections
terminating on a variable. We add two primitives to DMSL:

ˆ:: Var x→ x

.l :: r \ l⇒ [Ll : a, rM]→ a

12

The operational behavior of .l is different in DMSL than in most program-
ming languages: for DMSL, it builds paths; in programming languages, it is used
to destruct record values.

DMSL has no introduction rules for [], {}, 〈〉, or any type in the Atomic class
(that is, no atomic valued constants; this extension is examined in 5.3). In fact,
any value belonging to a type in the SchemaType class must have the form

v̂ln . . .

for some v :: Var x. This allows us to treat any expression of type t, where t is in
SchemaType, as a path to a schema element of type t. The implementation builds
Clio native path expressions from DMSL terms during normalization using this
mechanism.

4.3 Generating Data

We specify the creation of nested sets of data with another primitive:

setGen :: SchemaRow(x, s, t)⇒ {x} → Map s t (Var [x])

Canonical solution data instances always nest records inside of sets, so we
reflect this in the type of setGen.

The implementation of this primitive simply adds a corresponding generator
clause to the mapping state: if the Var is descended from a source root, we add
a ∀ clause; otherwise, an ∃ clause. However, we must be careful to interpret
alternating quantifiers, like

∀x ∈ p, ∃y ∈ q,∀z ∈ r, s.t. φ(p, q, r)

as nesting in order to faithfully embed the mapping language:

∀x ∈ p, ∃y ∈ q, s.t. ∀z ∈ r, φ(p, q, r)

In the type of setGen it appears that x has no relation to s or t, but they
will in fact always contain common subexpressions. This is because Vars must
descend from uses of root, which return Vars of type s and t.

NR schema variants/choice types are unlike those in most programming lan-
guages. The mapping language’s choice eliminator has a single fixed branch, and
so our primitive for specifying variant elimination is

chcGenl :: SchemaType x, SchemaRow(r, s, t)⇒ 〈Ll : x, rM〉 → Map s t (Var x)

As with set elimination, this primitive adds a generator clause to the map-
ping.

4.4 Filtering Data

Mapping expressions allow source and target side filtering, along with source
to target equality constraints. It is easy to tell which schema root each Var is
descended from, so we just have a single primitive which adds atomic equality
constraints to the mapping:

eq :: Atomic(x, y), SchemaRow(s, t)⇒ x→ y → Map s t ()

13

4.5 Nesting constraints

Nesting is done with a single primitive

nest :: SchemaRow(s, t)⇒ Map s t ()→ Map s t ()

which updates the mapping state such that the input mapping becomes
a nested constraint. The monadic plumbing ensures correct scoping and α-
conversion of Vars.

4.6 Summary

The types of the typesafe DMSL mapping primitives are shown in Figure 4.6.
Any expression of mapping type built using these primitives is guaranteed to
normalize into a satisfiable mapping.

ˆ:: Var x→ x

.l :: r \ l⇒ [Ll : a, rM] → a

rootSRC :: SchemaRow (s, t) ⇒ Map s t (Var [s])

rootDST :: SchemaRow (s, t) ⇒ Map s t (Var [t])

setGen :: SchemaRow(x, s, t) ⇒ {x} → Map s t (Var [x])

chcGenl :: SchemaType x, SchemaRow(r, s, t) ⇒ 〈Ll : x, rM〉 → Map s t (Var x)

eq :: Atomic(x, y), SchemaRow(s, t) ⇒ x→ y → Map s t ()

nest :: SchemaRow(s, t) ⇒ Map s t () → Map s t ()

Fig. 5. Statically typesafe DMSL primitives

5 Operations on Mappings

In addition to the basic primitives shown above, we have implemented operators
for casting/lifting a mapping, and performing other operations on mappings.
These operations may not be statically typesafe, but satisfiability is checked
during mapping normalization. In other words, with these extended operations,
we can only guarantee that DMSL expressions of mapping type that pass the
runtime checks are guaranteed to denote satisfiable constraints.

5.1 Lifting

We have implemented an additional set of combinators for “lifting” a mapping
expression from one schema into another, when a mapping’s schema occurs inside

14

of a larger schema: in Figure 6, the lower (XML) schema is contained inside the
upper schema. We use these combinators to evolve DMSL programs though
schema changes.

Fig. 6. Schema containment

Lifting Primitives Suppose we wish to reuse a mapping m from some schema
s to a particular schema Book:

m :: . . .⇒ Map s Book

m = ∀ . . . ∃v ∈ dst.author s.t. φ(v)

by applying it to a new target schema

[Lbook : Book, loanedTo : StringM]

using the straightforward rewrite

∀ . . . ∃v ∈ dst.book.author s.t. φ(v)

First, we can encode the containment path as

λx. x.book

Then, we use one of the record lifting combinators

liftRecDST :: SchemaRow(s, t, x)⇒ Map s t ()→ ([x]→ [t])→ Map s x ()
liftRecSRC :: SchemaRow(s, t, x)⇒ Map s t ()→ ([x]→ [s])→ Map x t ()

15

The lifting combinators change schema root types without changing the types
of other Vars, so that the mapping simply becomes

liftRecDST m (λx. x.book)

For this path encoding to be correct each path must terminate on the λ-
bound argument. The DMSL implementation checks this at runtime.

Likewise, DMSL has lifting primitives for sets of records and variants:

liftSetDST :: SchemaRow(s, t, x)⇒ Map s t ()→ ([x]→ {t})→ Map s x (Var [t])
liftVarDST :: SchemaRow(s, t, x)⇒ Map s t ()→ ([x]→ 〈t〉)→ Map s x (Var [t])
liftSetSRC :: SchemaRow(s, t, x)⇒ Map s t ()→ ([x]→ {s})→ Map x t (Var [s])
liftVarSRC :: SchemaRow(s, t, x)⇒ Map s t ()→ ([x]→ 〈s〉)→ Map x t (Var [s])

These primitives prefix the mapping state with a new binder. For instance,
and roughly speaking, given mapping m, applying liftSetSRC with path p yields

∀v ∈ src.p,m(src 7→ v)

These four lifting primitives add a bound variable, in this case v, which they
return. Intuitively, this returned variable is the old schema root.

The lifting primitives are complete: if a schema is contained inside of another,
then there is some sequence of record projections, set eliminations, and choice
eliminations that specifies the containment.

Applications of lifting One reason we are interested in the lifting primitives
is because they allow us to evolve DMSL programs though schema changes. In
many situations, lifting rewrites are semantics preserving, and so we can “relax”
the DMSL typing rules by “type-checking modulo lifting.”

Our DMSL implementation provides just such a mode of operation: if an
ill-typed DMSL program can be made well-typed by inserting lifting primitives,
then such insertions are performed automatically. One particular scenario where
such functionality is useful is when part of a DMSL program changes indepen-
dently from another; for instance, the schema of one departmental database
changes and existing mappings need to be updated. This gives DMSL programs
a measure of robustness against definition changes, because mappings can be
automatically updated.

It is possible to define an analogous notion of “downcasting”, or “de-lifting”,
but we leave this for future work. Likewise, there are other rewrites besides lifting
that are “usually semantics preserving.” For instance, polymorphism itself is a
kind of semantics-preserving re-use where the subtyping relation is used instead
of the containment relation. We are currently exploring these ideas.

DMSL also uses lifting to expand the applicability of pre-existing mappings.
In this scenario, we would like to map from S to T but cannot create a new map-
ping from scratch. Such scenarios often occur when we are automating mapping

16

construction. For instance, we may be trying to complete a dataflow graph of
mappings based on a user provided skeleton. If a mapping m from S′ to T , where
S′ is contained in S, is registered with the DMSL implementation, then Clio will
suggest a lifted version of m as a potential mapping.

5.2 Composition

DMSL includes a composition primitive

◦ :: SchemaRow(a, b, c)⇒ Map a b ()→ Map b c ()→ Map a c ()

Which is implemented by interfacing with Clio. The composition algorithm
itself [16] performs sophisticated rewriting operations which may remove gen-
erators. Hence we cannot statically guarantee the well-formedness of mappings
defined using composition; instead we must include runtime checks during map-
ping normalization.

We can add further operations, like inversion [17], in a similar manner.

5.3 Expressive Power of DMSL

DMSL can be extended to permit more expressive mappings at the cost of weak-
ening the semantic guarantees provided by the type system. For instance, naively
adding atomic valued constants to DMSL results in typeable mappings that con-
tain unsatisfiable constraints, like 1 = 2. Enriching the language of types or the
sophistication of the type system can alleviate this to some extent, and we are
studying more advanced type systems as part of our current work on mapping
polymorphism.

We can also add atomic valued function symbols to DMSL. When this is
done, DMSL mapping expressions are equivalent to second order tuple generating
dependencies, called so-tgds [16]. One simple way to do this is to simply interpret
atomic functions as the skolemizations of functions existentially bound at the
outermost level of a so-tgd. (Mapping expressions use second-order quantification
to capture lookup tables and unique keys; as such the second-orderness of the
expression is required in many situations arising from, e.g., target side foreign key
constraints.) For purely relational data, so-tgds are closed under composition.

For closure under composition with nested data (which is distinct from the
nesting occurring in a mapping expressions), we must add set-valued function
symbols to DMSL. As a consequence, we require a check outside the type system
to ensure well-formedness of the mapping expressions: we must prevent set-
valued functions from being used as inputs to generators (e.g. setGen (f x)
must be disallowed). Having set-valued function symbols allows DMSL to express
grouping conditions [22].

17

6 Implementation in Trex

DMSL is a modification of the system of qualified types in [24], which is imple-
mented as the Trex extension of the Hugs Haskell implementation [1]. Essen-
tially, Trex adds extensible records to Haskell 98. The key differences of DMSL
from [24] are

– DMSL has different built-in primitives
– DMSL has additional type constructors
– DMSL has an extended predicate entailment relation
– DMSL has a semantics tailored to mappings and is implemented by inte-

grating with the Clio mapping engine

It is not, to the best of our knowledge, possible to embed DMSL into Trex
because of two difficulties:

– The entailment relation that defines schema cannot be expressed without
classes over row expressions

– Some DMSL primitives must be parameterized by labels

Trex itself is a compiler extension, and not a pure Haskell 98 library, for
similar reasons. Nevertheless, we can get relatively far in a Trex DMSL imple-
mentation by just making use of the additional expressiveness Trex provides.
Trex writes Rec for [], and does not have the type constructors {} and 〈〉, but
we can easily add then:

data Set a
data Variant a

The right hand sides can be empty, because we use them only at the type
level for schema-related book-keeping.

We cannot parameterize Trex definitions by labels or use “row classes,” but
we can write Schema (Rec a) instead of SchemaRow a. Our entailment relation is
necessarily incomplete:

class Schema a where
class Atomic a where
instance Schema (Rec a) => Schema (Set (Rec a)) where
instance Schema (Rec a) => Schema (Variant (Rec a)) where

Still, we can try to implement the mapping monad, say by printing out
mapping expression syntax as we normalize expressions of mapping type:

type Map a b r = StateT (a, b, Int) IO r

Here we including a and b in the rhs, even though they are not associated
with any values (they are “phantom types”), because doing so aids type infer-
ence [11] [43]. Variables can be implemented as

18

data Var r = Var Int

where the Int is a unique variable index, which can plausibly be kept fresh
(and in scope/“non-exotic”) using monadic plumbing. Thus we add

root_SRC :: (Schema (Rec a), Schema b) => Map (Rec a) b (Var (Rec a))
root_SRC = return (Var 0)

root_DST :: (Schema (Rec b), Schema a) => Map a (Rec b) (Var (Rec b))
root_DST = return (Var 1)

Without label parameterized definitions, we can try to use Trex’s record
projection (written #l) as DMSL’s dot operator (.l). Because .l builds paths
and # projects from actual record values, we can’t really use #. Hence, we
won’t really be able to print out the mapping. However, the type of .l and #
coincide, so we can still get mappings to typecheck, although we can’t actually
create them. For instance, this typechecks in Trex:

eq :: (Schema (Rec r1, Rec r2, x, y), Atomic a) =>
(Var x, x -> a) -> (Var y, y -> a) -> Map (Rec r1) (Rec r2) ()
eq = error "unimplementable"

test :: (SchemaType (Rec (nickName :: b | e)),
SchemaType (Rec (name :: Rec (first :: b | c) | d)),
c\first, d\name, e\nickName, Atomic b,
SchemaType (Rec (name :: Rec (first :: b | c) | d),

Rec (nickName :: b | e),
Rec (name :: Rec (first :: b | c) | d),
Rec (nickName :: b | e))) =>

Map (Rec (name :: Rec (first :: b | c) | d))
(Rec (nickName :: b | e)) ()

test = do s <- root_SRC
t <- root_DST
eq (s, \s -> #first (#name s)) (t, \t -> #nickName t)

Here we are using a simple λ-encoding of paths, representing a path as a pair
of a Var y and a function y → a. This encoding is not adequate, but we cannot
finish the implementation anyway.

Trex will not actually infer the qualifiers; instead, it issues an error message
saying exactly what they are supposed to be. Because our typeclass encoding of
the predicate entailment relation is incomplete, Trex will not detect inconsistent
qualifiers, and so the mapping itself may not be satisfiable or even well-formed.
In addition, types have “redundant” qualifiers.

It may be possible to use other Haskell 98 extensions, like [31], to obtain a
complete implementation.

19

7 Related Work

7.1 Languages for Tree Transformation

The programming languages community has a wealth of knowledge about trans-
formations on tree-like data [21], including bi-directional tree transformations [25],
and languages for XML processing [30].

The Harmony data synchronization project [19] and associated lens sys-
tem [25] tackle the perpetually difficult “view-update problem” [42] for tree
data. A system with view-update allows users to create particular views (slices,
aggregations, etc) of data and allow updates to the view to propagate into the
original data. Lenses shares our approach of creating a DSL containing functional
programming primitives, although its expressions are given an operational se-
mantics. The language of [20] has only an informal type system.

The XML processing languages and systems XDuce [29] and Xtatic [23] aim
to create general XML processing languages where XML values are first-class.
The languages are functional in nature and are have an intuitive semantics for
XML processing. They introduce a rich language of types to describe XML values
(including regular expressions). The specificity of types for XML, however, leads
to restrictions on polymorphism, function types, and type inference that have
only recently been addressed [46]. These systems are, in a certain sense, the
XML counterparts of LINQ (see below).

7.2 Purely Relational languages

There is a fair amount of work on schema inference for SQL and relational algebra
expressions [40][7][45][13]. A common approach is to add relational operations as
primitives to a type theory to obtain polymorphism and higher order functions in
the same way as DMSL. When this is done with mainstream functional languages
the results are highly-reusable languages that suffer very little from the harmful
“impedance mismatch” [10] between the programming language and relational
data. The details of how polymorphism is achieved in these systems varies widely,
although the use of extensible records is a common theme. These ideas have found
their way into Haskell [35][44], and into C] as Microsoft’s LINQ project [36].

7.3 Related type theory

Early work in extensible records uses bounded subtyping [8], but extensible
records can also be implemented using qualified types [24]. Labels themselves
can be first class [33] or even scoped [34]. Use of qualified types as a type-level
deductive system is also well-studied [28]. Qualified types are a good fit for our
mapping language, but more expressive type theories can potentially type more
sophisticated operations, like pivot, which turns data into schema and so has a
dependent type [4]. Likewise, NR schema lack a recursive binding construct but
one can be added in a way similar to datalog [9]. The general approach of using
functional languages to host domain specific languages is studied in [43] and for

20

databases in particular in [35]; issues with ghost variables (datatypes with type
variables on the LHS of a datatype definition that are not used in the RHS) are
covered in [11]. Our use of monadic/stateful syntactic plumbing stems from [32].

7.4 Related Mapping Languages

If we have understood mapping in a ground up way, then model management un-
derstands mapping systems from the top down. It studies “schema and database
transformation capabilities that are independent of a particular data model” [2].
In particular, model management tries to understand how data integrity con-
straints can be preserved across particular commonly occuring “semantically-
meaningful” data transformations, like Match, Compose, Inverse, and Merge.
Model structure (the model-management equivalent of an NR schema) is typ-
ically given by directed, labelled graphs reminiscent of entity-relationship dia-
grams. [2] is a categorical characterization of these operators. The model man-
agement system Rondo [38] lets users write complex model transformations as
simple programs over a basis of primitive operations. The language of Rondo
itself, however, is not directly suitable for type-based reuse or schema inference
because the type system of its programs is weak.

Work on mappings in the Clio tradition is extensive; see the introduction for
references.

8 Conclusion

We have described DMSL, a system of qualified types for expressing programs
over mappings. Mappings are a particular kind of data transformation and DMSL
programs of mapping type are statically guaranteed by a qualified type system to
denote such transformations. We infer the schemas of canonical source and target
solution data instances and implement DMSL by interfacing with IBM’s Clio
mapping engine. DMSL brings together powerful operations over mappings (like
composition) from the mapping engine and combines them with programming
constructs for constructing programs over mappings, which occur in schema
evolution and in dataflow programming with mappings. DMSL programs can
automatically adapt to minor changes in mapping definitions through automatic
insertion of type coercions. We believe hybrid systems like DMSL which are
part mapping language and part system language will be invaluable as mapping
systems begin to scale and integrate with other systems.

References

1. Hugs haskell, http://www.haskell.org/hugs.
2. Suad Alagic and Philip A. Bernstein. A model theory for generic schema man-

agement. In DBPL ’01: Revised Papers from the 8th International Workshop on
Database Programming Languages, pages 228–246, London, UK, 2002. Springer-
Verlag.

21

3. Philip A. Bernstein, Sergey Melnik, and John E. Churchill. Incremental Schema
Matching. In VLDB (demo), pages 1167–1170, 2006.

4. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-
velopment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. Springer Verlag, 2004.

5. Angela Bonifati, Elaine Qing Chang, Terence Ho, Laks V. S. Lakshmanan, and
Rachel Pottinger. HePToX: Marrying XML and Heterogeneity in Your P2P
Databases. In VLDB(demo), pages 1267–1270, 2005.

6. Vinayak Borkar, Michael Carey, Daniel Engovatov, Dmitry Lychagin, Till West-
mann, and Warren Wong. XQSE: An XQuery Scripting Extension for the Aqua-
Logic Data Services Platform. In ICDE, pages 1307–1316, 2008.

7. Peter Buneman and Atsushi Ohori. Polymorphism and type inference in database
programming. ACM Trans. Database Syst., 21(1):30–76, 1996.

8. Luca Cardelli. Extensible records in a pure calculus of subtyping. In In Theoretical
Aspects of Object-Oriented Programming, pages 373–425. MIT Press, 1994.

9. Surajit Chaudhuri and Moshe Y. Vardi. On the equivalence of recursive and
nonrecursive datalog programs. In PODS ’92: Proceedings of the eleventh ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pages
55–66, New York, NY, USA, 1992. ACM.

10. J. Chen and Q. Huang. Eliminating the impedance mismatch between relational
systems and object-oriented programming languages, 1995.

11. James Cheney and Ralf Hinze. First-class phantom types. Technical report, 2003.
12. Microsoft Corp. Micorsoft Corp. The LINQ Project, 2005–2006.

http://msdn.microsoft.com/netframework/future/linq/.
13. Jan Van den Bussche, Dirk Van Gucht, and Stijn Vansummeren. A crash course on

database queries. In PODS ’07: Proceedings of the twenty-sixth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 143–154,
New York, NY, USA, 2007. ACM.

14. S. Dessloch, M. A Hernández, R. Wisnesky, A. Radwan, and J. Zhou. Orchid:
Integrating Schema Mapping and ETL. In ICDE, pages 1307–1316, 2008.

15. R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting to the core. In
PODS, pages 90–101, 2003.

16. R. Fagin, P. G. Kolaitis, L. Popa, and W. Tan. Composing Schema Mappings:
Second-Order Dependencies to the Rescue. TODS, 30(4):994–1055, 2005.

17. Ronald Fagin. Inverting schema mappings. ACM Trans. Database Syst., 32(4):25,
2007.

18. Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. Quasi-
inverses of schema mappings. In PODS, pages 123–132, 2007.

19. J. Nathan Foster, Michael B. Greenwald, Christian Kirkegaard, Benjamin C.
Pierce, and Alan Schmitt. Exploiting schemas in data synchronization. Journal of
Computer and System Sciences, 2007.

20. J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce,
and Alan Schmitt. Combinators for bidirectional tree transformations: A linguis-
tic approach to the view-update problem. ACM Transactions on Programming
Languages and Systems, 29(3):17, May 2007.

21. J. Nathan Foster, Benjamin C. Pierce, and Alan Schmitt. A logic your typechecker
can count on: Unordered tree types in practice. In Workshop on Programming
Language Technologies for XML (PLAN-X), informal proceedings, January 2007.

22. A. Fuxman, M. A. Hernández, H. Ho, R. J. Miller, P. Papotti, and L. Popa. Nested
Mappings: Schema Mapping Reloaded. In VLDB, pages 67–78, 2006.

22

23. Vladimir Gapeyev, Michael Y. Levin, Benjamin C. Pierce, and Alan Schmitt. The
Xtatic experience. In Workshop on Programming Language Technologies for XML
(PLAN-X), January 2005. University of Pennsylvania Technical Report MS-CIS-
04-24, Oct 2004.

24. Benedict R. Gaster and Mark P. Jones. A polymorphic type system for extensi-
ble records and variants. Technical Report Technical report NOTTCS-TR-96-3,
Department of Computer Science, University of Nottingham, November 1996.

25. Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt.
A language for bi-directional tree transformations. Technical report, In Workshop
on Programming Language Technologies for XML (PLAN-X), 2003.

26. Torsten Grust and Marc H. Scholl. How to comprehend queries functionally. J.
Intell. Inf. Syst., 12(2-3):191–218, 1999.

27. L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio Grows Up: From
Research Prototype to Industrial Tool. In SIGMOD, pages 805–810, 2005.

28. Thomas Hallgren. Fun with functional dependencies or (draft) types as values in
static computations in haskell. In Proc. of the Joint CS/CE Winter Meeting, 2001.

29. Haruo Hosoya and Benjamin C. Pierce. Xduce: A statically typed xml processing
language. ACM Trans. Inter. Tech., 3(2):117–148, 2003.

30. Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression types
for xml. ACM Trans. Program. Lang. Syst., 27(1):46–90, 2005.

31. Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous
collections. In Haskell ’04: Proceedings of the ACM SIGPLAN workshop on Haskell,
pages 96–107. ACM Press, 2004.

32. John Launchbury and Simon L Peyton Jones. Lazy functional state threads. In
In Programming Languages Design and Implementation, pages 24–35. ACM Press,
1994.

33. Daan Leijen. First-class labels for extensible rows. Technical Report UU-CS-2004-
51, Department of Computer Science, Universiteit Utrecht, December 2004.

34. Daan Leijen. Extensible records with scoped labels. In Trends in Functional
Programming ’05, pages 297–312, 2005.

35. Daan Leijen and Erik Meijer. Domain specific embedded compilers. In PLAN
’99: Proceedings of the 2nd conference on Domain-specific languages, volume 35.1,
pages 109–122, New York, NY, USA, January 1999. ACM Press.

36. Erik Meijer, Brian Beckman, and Gavin M. Bierman. LINQ: reconciling object,
relations and XML in the .NET framework. In SIGMOD, page 706, 2006.

37. S. Melnik, P. A. Bernstein, A. Halevy, and E. Rahm. Supporting Executable
Mappings in Model Management. In SIGMOD, pages 167–178, 2005.

38. S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A programming platform for
generic model management. In SIGMOD, pages 193–204, 2003.

39. Renée J. Miller, Laura M. Haas, and Mauricio A. Hernández. Schema Mapping as
Query Discovery. In VLDB, pages 77–88, 2000.

40. Lajos Nagy and Ryan Stansifer. Polymorphic type inference for the relational
algebra in the functional database programming language neon. In ACM-SE 44:
Proceedings of the 44th annual Southeast regional conference, pages 673–678, New
York, NY, USA, 2006. ACM.

41. Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge,
MA, USA, 2002.

42. Benjamin C. Pierce. Adventures in bi-directional programming, December 2007.
FSTTCS invited talk.

43. Morten Rhiger. A foundation for embedded languages. ACM Trans. Program.
Lang. Syst., 25(3):291–315, 2003.

23

44. Alexandra Silva and Joost Visser. Strong types for relational databases. In Haskell
’06: Proceedings of the 2006 ACM SIGPLAN workshop on Haskell, pages 25–36,
New York, NY, USA, 2006. ACM.

45. Jan van den Bussche and Emmanuel Waller. Type inference in the polymorphic
relational algebra. In PODS ’99: Proceedings of the eighteenth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 80–90, New
York, NY, USA, 1999. ACM.

46. Jérôme Vouillon. Polymorphic regular tree types and patterns. In POPL ’06:
Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 103–114, New York, NY, USA, 2006. ACM.

47. C. Yu and L. Popa. Semantic adaptation of schema mappings when schemas evolve.
In VLDB, pages 1006–1017, 2005.

	Higher Order Schema Mapping
	Ryan Wisnesky

