
Minimizing Monad Comprehensions

Ryan Wisnesky

TR-02-11

Computer Science Group
Harvard University

Cambridge, Massachusetts

Minimizing Monad Comprehensions

Ryan Wisnesky
Harvard University
ryan@cs.harvard.edu

March 9, 2011

Abstract

Monad comprehensions are by now a mainstay of functional programming languages. In this paper we
develop a theory of semantic optimization for monad comprehensions that goes beyond rewriting using
the monad laws. A monad-with-zero comprehension do x← X; y ← Y ; if P (x, y) then return F (x, y)
else zero can be rewritten, so as to minimize the number of ← bindings, using constraints that are
known to hold of X and Y . The soundness of this technique varies from monad to monad, and we
characterize its soundness for monads expressible in functional programming languages by generalizing
classical results from relational database theory. This technique allows the optimization of a wide class
of languages, ranging from large-scale data-parallel languages such as DryadLINQ and Data Parallel
Haskell to probabilistic languages such as IBAL and functional-logical languages like Curry.

1 Introduction

Languages and systems such as MapReduceMerge [39], Ferry [21], Data Parallel Haskell [9], DyadLINQ [27],
PIG [34], Fortress [3] and SciDB [11] are proliferating as Moore’s law drives the cost of computing ever lower
and the size of data ever larger. Like their predecessors SQL, NESL [7], and Kleisli [38], these declarative,
collection-oriented languages and systems lift programming to the level of abstract collections such as sets,
bags, lists, and trees. And as the database community discovered long ago, the sheer size of the data
processed by these systems demands sophisticated optimization [30]. Simply choosing the right order to
iterate over several collections can mean the difference between a query than halts in a few seconds vs a few
days. At this scale, the particular properties of the data at hand become important [17].

Although these languages vary in the kinds of queries and collections they support, large fragments of
these languages can be formalized in a uniform way using monads (to model collections) and comprehensions
(to model queries) [20, 8]. Although monads have seen great success in providing structure to functional
programs [37], sophisticated reasoning about monads using a priori semantic information has tradition-
ally belonged to the realm of database theory. For example, in relational query processing, data integrity
constraints capture such semantic information as keys, functional dependencies, inclusions, and join decom-
positions. These constraints are used as additional rewrite rules during optimization, a process known as
semantic optimization [1, 36, 13].

For example [1], consider a query over a relation (set of records) Movies with fields title, director, and
actor:

for (m1 in Movies) (m2 in Movies)

where m1.title = m2.title

return (m1.director,m2.actor)

This query returns (a set of) tuples (d, a) where a acted in a movie directed by d. A naive implementation
of this query will require a join. However, when Movies satisfies the the functional dependency title →
director (meaning that if (director : d, title : t, actor : a) and (director : d′, title : t′, actor : a′) are records in

1

Movies such that t = t′, then d = d′), this query is equivalent to

for (m in Movies)

return (m.director,m.actor)

which can be evaluated without a join. (Note that if Movies did not satisfy the functional dependency, the
equivalence would not necessarily hold.)

Of course, knowing that the functional dependency holds, a programmer might simply write the optimized
query to begin with. But constraints are not always known at compile time, such as when collections are
indexed on-the-fly. Moreover, people are not always the programmers: information integration systems such
as Midas [5] and Clio [22] automatically generate large amounts of code. The significant, potentially order-
of-magnitude speed-ups enabled by semantic optimization are well-documented in the literature and applied
in commercial databases such as DB2 [24]. Our goal in this paper is to introduce semantic optimization to
programming languages more generally.

Our for − where − return notation is defined in terms of an arbitrary monad, and the soundness of
semantic optimization varies from monad to monad. For example, this equivalence does not hold for lists
or bags. Nevertheless, we see semantic optimization as useful not only for large-scale collection processing,
but for other computations which can be modeled, at least in part, using monad comprehensions, such
as functional-logic programming in Curry [4] and Daedalus [23], as well as probabilistic programming in
Haskell [15] and IBAL [35].

Contributions

The key to semantic optimization lies in a classical rewriting system from relational database theory, known
as the chase [12, 2]. The primary contribution of this paper is to define, axiomatically, the monads for which
the chase is sound. We are not the first to do so [36], but we are the first to do so in a way accessible to
a functional programming audience. A consequence of our functional programming perspective is a catalog
of additional monads for which the chase is sound – the probability monad [15] being chief among them. It
is likely that entirely new optimization strategies for probabilistic languages can be developed based on the
soundness of the chase.

Related Work

Semantic optimization (which conditionally preserves semantics, subject to constraints) complements non-
semantic optimization (which always preserves semantics). Relational algebra has a well-developed theory
of non-semantic optimization by minimizing detailed cost models [17], and cost models for monad compre-
hensions have also been developed [28]. Inductive datatypes (and to a lesser extent, function types [32]) and
monads as found in functional programming have a well-developed theory of non-semantic optimization by
fold-fusion and deforestation [31, 19, 20, 33, 6, 26]. More recently, practical advances in theorem proving
have sparked renewed interest in the duality between program verification and semantic optimization [25].

Outline

We begin by giving an overview of monads from a functional programming perspective in Section 2. We
then use monad comprehensions to define queries in Section 3 and constraints in Section 4. In Section 5 we
describe the chase, and give sufficient conditions for it to be terminating and sound. We then use the chase
to optimize queries in Section 6. In these sections, our running example is intuitively interpreted in the set
monad, but in Section 7 we re-examine our example in the probability monad.

2

2 Monads

In functional programming, a monad consists of a type-constructor M and two operations, return : t→M t
and bind : M t→ (t→M t′)→M t′, such that the following three laws hold:

bind (return x) f = fx

bind m return = m

bind (bind m f) g = bind m (λx. bind (fx) g)

A monad with zero has another operation, zero : M t, such that two additional laws hold:

bind zero f = zero

bind m (λx. zero) = zero

2.1 Examples

Monads with zeros are often used to model collections. For example, consider lists and sets in Haskell, in
so-called “insert presentation”

data Ins a = Nil | Cons a (Ins a)

-- list monad

instance MonadZero Ins where

return x = Cons x Nil

bind x f = append (map f x)

zero = Nil

-- set monad

instance MonadZero Ins where

return x = Cons x Nil

bind x f = union (map f x)

zero = Nil

Monads are not tied to particular representations. For example, the list and set monad can also be
defined using so-called “union presentation”:

data Un = Empty | Singleton a | Union (Un a) (Un a)

Not all collections have zeroes – for example, binary trees do not have a zero. Monads can also be formed
from functions; here, state with exceptions forms a monad with zero:

type ST s a = (s -> Maybe (a, s))

instance MonadZero (ST Int) where

return s a = Just (s, a)

bind c f s = case c s of

Nothing -> Nothing

Just (s’, a’) -> f a’ s’

zero = \s -> Nothing

Monads are by now an important subject in their own right. We refer the reader to [20, 37] for more
details.

2.2 Notation

Monads are often used with so-called do-notation, which in Haskell looks like:

3

do x <- X

c

=

bind X (\x -> c)

Haskell programmers typically first encounter do-notation with Haskell’s IO monad, as in the following
program which outputs “Hello World”:

main = do putStr "Hello"

putStrLn "World"

Also popular is monad comprehension notation, which works for monads with zero, such as lists and sets:

[c | x <- X, P]

=

do x <- X

if P then return c else zero

For example,

[x | x <- 1..10 , isEven x] = [2, 4, 6, 8, 10]

To emphasize the connection with database theory, we will use for − where − return notation, which
we define in the next section. Regardless of the choice of notation, monad comprehensions can be normalized
using the monad laws, as described in [20]. An interesting direction for future work would be to use a weaker
structure, such as applicative functors, in place of monads in our theory.

3 Queries

We will be focusing on comprehensions which are syntactically conjunctive queries. We will assume we
are working in a strongly-normalizing typed λ-calculus with first-class records, such as [18]. We will write
(l1 : e1, . . . , lN : eN) to indicate a record with labels l1, . . . lN and corresponding projections e1, . . . , eN .
We will assume records contain unique labels and are equated up-to label permutation. For the most part,
the specifics of our ambient language will not matter. We will abbreviate (potentially 0-length) vectors of

variables x1, ..., xN as −→x . Fix a monad with zero M and let
−−−−−→
X : M t . We will write P (−→x)to indicate a

conjunction of predicates over the variables −→x . A tableau (plural: tableaux) has the form:

Definition 1 (Tableau)

for
−−−−−−→
(x in X)

where P (−→x)

The
−−−−−−→
(x in X) are called generators, and the

−→
X are called roots. A query is a tableau and an expression

R(−→x):

Definition 2 (Query)

for
−−−−−−→
(x in X)

where P (−→x)

return R(−→x)

A query is interpreted as a monad comprehension:

4

Definition 3 (Query Semantics)

do x1 ← X1

. . .

xN ← XN

if P (x1, . . . , xN)

then return R(x1, . . . , xN)

else zero

For example, the query from the introduction:

for (m1 in Movies) (m2 in Movies)

where m1.title = m2.title

return (m1.director,m2.actor)

is interpreted as:

do m1 ←Movies

m2 ←Movies

if m1.title = m2.title

then return (m1.director,m2.actor)

else zero

which de-sugars into

bind Movies (λm1.

bind Movies (λm2.

if m1.title = m2.title

then return (m1.director,m2.actor)

else zero))

and, in the set-monad, this becomes

union (map Movies (λm1.

(union (map Movies (λm2.

if m1.title = m2.title

then Cons (m1.director,m2.actor) Nil

else Nil)))))

A query can also naturally be interpreted as a function over its roots (here, Movies). In this case, to
evaluate a query we require values for the roots (here, we require a particular relation Movies). We will
write q(I) to indicate a query q evaluated at I. The I is usually called an instance. Our example query can
thus also be regarded as the function:

λMovies. do m1 ←Movies

m2 ←Movies

if m1.title = m2.title

then return (m1.director,m2.actor)

else zero

5

Extensions

Many extensions to conjunctive queries have been studied in the literature. Two stand out as particularly
important:

• It is possible to allow generators to be dependent; for example:

for (g in Groups) (person in g) . . .

This allows for nested values; for example, nested relations [36].

• It is possible to interpret queries in monad algebras, rather than monads [30]. A monad algebra is an
operation of type M t → (t → t′) → t′ obeying certain equations. This more general type (relative
to bind) allows for aggregation operations; for example, it is possible to write a query to count the
number of elements in a list, which is impossible in our system.

We will ignore these extensions for now, but it is likely that our results will hold in these more general
settings.

4 Constraints

We are interested in reasoning about monad comprehensions under constraints, so as to exploit the constraints
found in, for example, large-scale collection processing and functional logic programming. In this section
we formally define the class of constraints we are using; in the next section we show how queries can be
rewritten by them (a process referred to as the chase); in the section after that, we show how the chase can
be used to optimize queries.

4.1 Embedded Dependencies

Our constraints take the form of pairs of tableaux, which define so-called embedded, implicational dependen-
cies [1]. Intuitively, one tableaux is universally quantified, and the other existentially:

Definition 4 (Embedded Dependency)

forall
−−−−−−→
(x in X)

where P (−→x)

exists
−−−−−−→
(y in Y)

where B(−→x ,−→y)

The functional dependency from our example is written:

forall (x in Movies) (y in Movies)

where x.title = y.title,

exists

where x.director = y.director

Unlike conjunctive queries, which have a straightforward interpretation in a monad with zero, the meaning
of an embedded dependency is less clear. We will give the meaning of a constraint C using a pair of
queries called the front and back of C. We write L(−→x) to indicate a record capturing the variables −→x ; e.g.,
(x1 : x1, . . . , xN : xN).

Definition 5 (Front)

for
−−−−−−→
(x in X)

where P (−→x)

return L(−→x)

6

Definition 6 (Back)

for
−−−−−−→
(x in X)

−−−−−−→
(y in Y)

where P (−→x) ∧B(−→x ,−→y)

return L(−→x)

We will write I |= C to indicate that constraint C holds of instance I.

Definition 7 (Satisfaction) I |= C when

front(C)(I) = back(C)(I)

We will write front(R,C) and back(R,C) to indicate the queries front(C) and back(C) but whose return
clauses are R. Continuing with our example, our functional dependency holds of a particular instance Movies
when

for (x in Movies) (y in Movies)

where x.title = y.title,

return (x : x, y : y)

=

for (x in Movies) (y in Movies)

where x.title = y.title ∧ x.director = y.director

return (x : x, y : y)

For example, in this instance:

title director actor

T D A

T D B

the constraint holds because both sides evaluate to (omitting some record labels to save space):

x y

(T,D,A) (T,D,A)

(T,D,A) (T,D,B)

(T,D,B) (T,D,A)

(T,D,B) (T,D,B)

whereas in this instance:

title director actor

T D1 A

T D2 B

the constraint does not hold because the left-hand side evaluates to:

x y

(T,D1, A) (T,D1, A)

(T,D1, A) (T,D2, B)

(T,D2, B) (T,D1, A)

(T,D2, B) (T,D2, B)

which is not equivalent to the right-hand side:

x y

(T,D1, A) (T,D1, A)

(T,D2, B) (T,D2, B)

7

5 The Chase

The chase is a confluent rewriting system that allows queries to be rewritten using constraints [1]. In this
section we define the chase and characterize when it is sound and when it terminates. In the next section
we show how to use it to optimize queries.

5.1 Homomorphisms

A homomorphism between queries, h : Q1 → Q2

Q1 ::= for
−−−−−−−→
(v1 in V1)

where P1(−→v1)

return R1(−→v1)

→
Q2 ::= for

−−−−−−−→
(v2 in V2)

where P2(−→v2)

return R2(−→v2)

is a substitution mapping the for -bound variables of Q1 (namely, −→v1) to the for -bound variables of Q2

(namely, −→v2) that preserves the structure of Q1 in the sense that

Definition 8 (Homomorphism) .

• Each (h(v1i) in V1i) appears in
−−−−−−−→
(v2 in V2) (that is, the image of each generator in Q1 is found in

the generators of Q2).

• P1(h(−→v1)) is entailed by P2(−→v2) (that is, the images of the conjuncts in Q1 are a consequence of the
conjuncts in Q2).

• R1(h(−→v1)) = R2(−→v2), under the equalities in P2 (that is, the return clauses are equivalent).

For arbitrary predicates P1 and P2 and arbitrary expressions R1 and R2, finding homomorphisms is
undecidable. However, when the queries are path-conjunctive – that is, when P1, P2 are conjunctions of
equalities between paths of the form v.l and R1 and R2 are records built from paths – finding homomorphisms
is NP-hard. Moreover, in this case there are practical, sound heuristics [13] based on pruning the search space
of substitutions to remove candidates that are “obviously wrong” based on a partial variable assignment. In
this paper, all our examples are path conjunctive.

For example, consider our Movies query (call it Q1):

Q1 ::= for (m1 in Movies) (m2 in Movies)

where m1.title = m2.title

return (m1.director,m2.actor)

and also the smaller query (call it Q2) which we will later optimize Q1 into:

Q2 ::= for (m in Movies)

return (m.director,m.actor)

There is a homomorphism h : Q1 → Q2; namely, the substitution m1 7→ m,m2 7→ m. To check this, we first
apply h to Q1:

h(Q1) ::= for (m in Movies) (m in Movies)

where m.title = m.title

return (m.director,m.actor)

8

In h(Q1) each generator (m in Movies) appears in Q2. Moreover, the where clause of h(Q1) is a tautology
and hence is entailed by the (empty) where clause of Q2. Finally, the two return clauses are equal. As such,
the substitution m1 7→ m,m2 7→ m is a homomorphism.

In the set monad, homomorphisms are useful because the existence of a homomorphism A→ B implies
that for every I, B(I) ⊆ A(I). Indeed, it is easy to see in this example that Q2(I) ⊆ Q1(I) for any I. Later
we will make use of a similar property for arbitrary monads to show that the chase is sound.

At this point it is instructive to check that there is no homomorphism Q2 → Q1. There are only two
candidate substitutions: m 7→ m1 and m 7→ m2. Neither of these works because neither of the images of Q2’s
return clause (either return (m1.director,m1.actor) or return (m2.director,m2.actor)) is equivalent to Q1’s
return clause (return (m1.director,m2.actor)), even under the equality in Q1 (m1.title = m2.title). Because
there are not homomorphisms in both directions, these two queries are not equivalent. Indeed, consider the
instance:

title director actor

T D1 A

T D2 B

Q1 evaluates to

director actor

D1 A

D1 B

D2 A

D2 B

but Q2 evaluates to:

director actor

D1 A

D2 B

5.2 The Chase

Now we can define the chase. Let

C ::= forall
−−−−−−→
(x in X)

where P (−→x)

exists
−−−−−−→
(y in Y)

where B(−→x ,−→y)

Q ::= for
−−−−−−→
(v in V)

where O(−→v)

return R(−→v)

and suppose there exists a homomorphism h : front(R,C) → Q. Then a chase step is to rewrite Q into
chase(Q,C) by adding the image of the existential part of C:

Definition 9 (Chase Step)

chase(Q,C) ::= for
−−−−−−→
(v in V)

−−−−−−→
(y in Y)

where O(−→v) ∧B(
−−→
h(x),−→y)

return R(−→v)

9

The chase itself is to repeatedly rewrite Q by looking for homomorphisms from C:

Q chase(Q,C) chase(chase(Q,C), C) . . .

The chase will converge to a unique fixed point [13], provided that 1) C is acyclic and 2) we do not take
a chase step when there is a homomorphism extending h from chase(Q,C) to Q. The definition of acyclicity
is somewhat technical, so we defer it until the end of the section. The chase extends straightforwardly to
sets of constraints.

Continuing with our Movies example, we can see that there is a homomorphism x 7→ m1, y 7→ m2 from
the front of our constraint:

forall (x in Movies) (y in Movies)

where x.title = y.title,

exists

where x.director = y.director

to our original query:

for (m1 in Movies) (m2 in Movies)

where m1.title = m2.title

return (m1.director,m2.actor)

Hence, the chase applies, and chase(Q,C) is:

for (m1 in Movies) (m2 in Movies)

where m1.title = m2.title ∧m1.director = m2.director

return (m1.director,m2.actor)

At this point, we stop taking chase steps, because we have that chase(chase(Q,C), C) = chase(Q,C)
and hence there is a homomorphism chase(chase(Q,C), C) → chase(Q,C). Note that in general, it is
not enough to check for the syntactic equality of chase(Q,C) and Q to stop the chase, as queries can be
equivalent without being syntactically equal. Hence, we must use homomorphisms to detect that the chase
has converged.

5.3 Soundness

It is well-known that the chase is not sound for arbitrary monads, and it is not sound for the list and bag
monads in particular [36]. Intuitively, the chase adds generators to a query, and adding generators to list and
bag comprehensions can add additional tuples to the result; in the set monad, these extra tuples disappear
by idempotency. For example, in the list monad, our functional dependency title → director still holds on
this instance:

title director actor

T D A

T D B

but our original and optimized queries are not equivalent; they result in, respectively,

D A

D B

D A

D B

and

D A

D B

10

Theorem 1 The chase is sound under the following conditions:

• Commutativity. We require the ability to permute generators as we please.

for
−−−−−−→
(u in U)

−−−−−−→
(v in V)

X(−→u ,−→v)

=

for
−−−−−−→
(v in V)

−−−−−−→
(u in U)

X(−→u ,−→v)

• Logicality. We require that exists behave “as it should” with respect to for . Suppose
−−−−−−→
(a in V) ⊆

−−−−−−→
(u in U). Then

for
−−−−−−→
(u in U)

where P (−→u)

return E(−→u)

=

for
−−−−−−→
(u in U)

where P (−→u) ∧

exists
−−−−−−→
(v in V) where −→v = −→a

return E(−→u)

• Idempotency. We require that when −→a /∈ fv(E),

if exists
−−−−−→
(a in A)

where P (−→a)

then return E

else zero

=

for
−−−−−→
(a in A)

where P (−→a)

return E

• Distinguishability. We require that zero be distinguished from return.

return x 6= zero

• Uniformity We require that front(C) = back(C) implies front(R,C) = back(R,C) for any R. That
is,

for
−−−−−−→
(u in U)

where P (−→u)

return L(−→u)

=

for
−−−−−−→
(u in U)

−−−−−→
(v in V)

where P (−→u) ∧B(−→u ,−→v)

return L(−→u)

11

implies, for any X,

for
−−−−−−→
(u in U)

where P (−→u)

X(−→u)

=

for
−−−−−−→
(u in U)

−−−−−→
(v in V)

where P (−→u) ∧B(−→u ,−→v)

X(−→u)

We will call monads with such properties UCLID (Uniform, Commutative, Logical, Idempotent, Distinguishable)
monads.

The exact phrasing of the idempotency property varies in the literature, and there are multiple non-
equivalent definitions [29]. Our particular phrasing is motivated by the law’s use in our soundness proof.
One consequence of our axioms is the following more intuitive idempotency law (which is equivalent to the
definition of idempotency in [14]:

for
−−−−−−→
(x in X) return E(−→x) =

for
−−−−−−→
(x in X)

−−−−−−→
(y in X) return E(−→x)

This simpler definition makes it easy to rule out certain monads as being idempotent. For example, lists,
bags, trees, state and IO are all non-idempotent.

5.4 UCLID Monads

Our study has so far yielded four UCLID monads: the option monad; the finite map monad (of type
t→ option a, for some fixed t), which is also called the partial reader monad; the set monad; and probability
monad. We will defer a discussion of the probability monad until Section 7. In this section, we will discuss
the expressive power of sets and embedded dependencies.

The chase is well-understood in the set monad. In fact, the chase is complete for nested sets and finite
maps [36], at least for path-conjunctive queries. Proving completeness requires constructing a canonical
model set for a given query; because this construction depends on the particular monad in question, gen-
eralizing completeness results to other monads seems difficult. Nevertheless, this is an interesting direction
for future work. The chase in the set monad can also be used for many purposes besides the optimization
techniques described in this paper. For example, it is possible to rewrite queries so as to respect constraints
and rewrite constraints by other constraints. Particular results vary slightly depending on whether infinite
sets are allowed, but the set monad can be described in many presentations, ranging from insert and union
presentations (as in Section 2), to a functional presentation a→ bool, or even a B-tree presentation.

Embedded dependencies can express a wide variety of constraints between sets (including virtually all
constraints used in modern relational database systems, such as keys, foreign keys, inclusions, and join
decompositions). Sets, when coupled with embedded dependencies, can model a wide variety of collections.
For example, it is possible to model a function or finite map using a set C and a functional dependency:

forall (x in X) (y in X)

where x.key = y.key

exists

where x.value = y.value

More refined notions such as injective functions can also be modeled this way. Transitive closure can also be

12

expressed:

forall (x in X) (y in X)

where x.b = y.a

exists
−−−−−−→
(z in X)

where z.a = x.a ∧ z.b = y.b

In short, sets are ubiquitous, versatile, and expressive, and the ability to reason about them under constraints
enables many other optimization and verification techniques.

Sets are by far the most well-understood of the UCLID monads, at least with respect to the chase.
Since our starting point is relational database theory, we are somewhat biased towards sets and set-based
examples. Nevertheless, our study is just beginning and we are hopeful that generalizing from monads to
monad algebras will allow us to find UCLID monad algebras.

5.5 Acyclicity

For arbitrary queries and embedded dependencies, the chase may not terminate, and termination is unde-
cidable. However, for weakly acyclic constraints, a condition which can be checked in polynomial time and
is common in practice, rewriting does terminate, and does so in polynomial time. In this section we describe
the weakest condition yet known that guarantees termination [13]. This section is mostly of interest to
implementors and can be skipped on a first reading.

To define weak-acyclicity it is necessary to use so-called domain-relational notation instead of our so-
called tuple-relational notation. The difference in the two notations is what we are quantifying over: tuples,
or atomic values. For example, our original query, in tuple-relational style, is:

forall (x in Movies) (y in Movies)

where x.title = y.title,

exists

where x.director = y.director

In domain-relational style, assuming title, director, and actor are the only attributes in Movies, this
becomes:

Movies(t, d, a) ∧Movies(t′, d′, a′) ∧ t = t′ → d = d′

One of the disadvantages of the domain-relational style is that queries become monomorphic: every
attribute must have a variable. Another downside is that we are restricted to path-conjunctive queries: our
where clauses must be conjunctions of equalities between paths of the form v.l, and our return clauses must
be records over paths. For this reason, we prefer tuple-relational style, which is more common in functional
programming anyway. Otherwise, the two notations are generally equivalent. Using the domain-relational
notation allows us to divide embedded dependencies into two classes: equality-generating dependencies (egds),
such as above, of the form

φ(−→x)→ x1 = x2

and tuple-generating dependencies (tgds), of the form:

φ(−→x)→ ∃−→y ψ(−→x ,−→y)

An example tgd, in tuple-relational style, is:

forall (e in Employees)

where

exists (p in People)

where e.name = p.name

13

which becomes, in domain-relational style (assuming name is the only attribute):

Employees(e)→ ∃p People(p) ∧ e = p

Now we can define:

Definition 10 (Weakly Acyclic Constraints) Let C be a set of embedded dependencies. Construct a
directed graph, called the dependency graph, as follows: (1) there is a node for every pair (R, A) with R a
top-level generator (such as Movies) and A an attribute of R; call such a pair a position; (2) add edges as
follows: for every dependency φ(−→x)→ ∃−→y ψ(−→x ,−→y) and for every x that occurs in ψ:

• For every occurence of x in φ in position (R,Ai):

1. for every occurence of x in ψ in position (S,Bj), add an edge (R,Ai)→ (S,Bj).

2. in addition, for every existentially quantified variable y and for every occurence of y in ψ in
position (T,Ck), add a special edge (R,Ai)⇒ (T,Ck).

Note that there may be two edges in the same direction between two nodes, if exactly one of the two edges
is special. Then the constraints are weakly acyclic if the dependency graph has no cycle going through a
special edge. A set of tgds and egds is weakly acyclic if the set of all its tgds is weakly acyclic.

Our movies example is trivially acyclic because functional dependencies are equality generating. But the
dependency graph for the tgd is:

(Employee,Name)
→⇒ (Person,Name)

which is acyclic.

6 Tableaux Minimization

We now demonstrate how to minimize queries in the presence of constraints, following [13]. The soundness
of this procedure follows from the soundness of the chase. Suppose we are given a query Q and acyclic
constraints C. We first chase Q with C to obtain U , a so-called universal plan. We then search for subqueries
of U (obtained by removing generators from U), chasing each in turn with C and checking for equivalence
with U .

6.1 Example - Movies

Start with:

Q ::= for (m1 in Movies) (m2 in Movies)

where m1.title = m2.title

return (m1.director,m2.actor)

C ::= for (x in Movies) (y in Movies)

where x.title = y.title

x.director = y.director

The chased query – the universal plan – is:

U ::= for (m1 in Movies) (m2 in Movies)

where m1.title = m2.title ∧m1.director = m2.director

return (m1.director,m2.actor)

14

We may now proceed with tableau minimization by searching for subqueries of U . Removing the generator
(m1 in Movies) and replacing m1 with m2 in the body of the query gives a smaller query:

Q′ ::= for (m2 in Movies)

return (m2.director,m2.actor)

Now we look for a homomorphism Q′ → U . The identity substitution works; the important part here
to notice is the return clause, where (m2.director, m2.actor) is equal to (m1.director, m2.actor) precisely
because of the equality m1.director = m2.director, which appears in U but not in Q. Note that there is also
a homomorphism U → Q′ (namely, m2 7→ m,m1 7→ m); hence U = Q′ = Q.

6.2 Example - Minimization without Constraints

We pause to remark that tableaux minimization can also be done without constraints. Indeed, this degenerate
case was first proposed in 1977 [10]. Consider the (contrived) query:

for (x in X) (y in X)

where P (x)

return E(x)

This minimizes to the equivalent query:

for (z in X)

where P (z)

return E(z)

In the top-to-bottom direction, the homomorphism is x 7→ z, y 7→ z, and in the bottom-to-top direction
is z 7→ x.

6.3 Example - Indexing

We conclude this section with an optimization scenario involving a tuple-generating constraint (that is, a
constraint with a non-empty exists clause). As we remarked in the introduction, a reasonably competent
programmer might be able to optimize our Movies query directly, without applying the chase at all. But
sometimes constraints are not available to the programmer, such as when indices are generated on the fly.
Consider the following query, which in the set monad returns the names of all People between 16 and 18
years old:

Q ::= for (p in People)

where p.age > 16 ∧ p.age < 18

return p.name

Depending on the underlying access patterns, or the whims of a database administrator, a modern rela-
tional database management system might transparently index People by creating another relation Children,
such that the following constraint holds:

C ::= forall (p in People)

where p.age < 21

exists (c in Children)

where p.name = c.name ∧ p.age = c.age

In order to effectively use this new relation, queries written against People must be rewritten, at runtime,
to use Children. Tableaux minimization provides an automated mechanism to do so. First, we look for

15

a homomorphism front(C) → Q, and discover that the identity substitution works, because p.age < 21 is
entailed by p.age > 16 ∧ p.age < 18. Thus the chase applies and we obtain a universal plan:

U ::= for (p in People) (c in Children)

where p.age > 16 ∧ p.age < 18 ∧
p.name = c.name ∧ p.age = c.age

return p.name

Now, we minimize the universal plan by removing the (p in People) generator (note that to do so we
must replace each occurrence of p with some other well-typed variable, in this case c):

Q′ ::= for (c in Children)

where c.age > 16 ∧ c.age < 18

return c.name

We check that Q′ = U by looking for homomorphisms in both directions. The identity substitution is a
homomorphismQ′ → U , owing to the fact that p.name = c.name. But at this point there is no homomorphism
U → Q′, because there is no substitution h that makes (h(p) in People) equal to (c in Children). In fact,
C alone is not enough to prove that Q′ = Q – there may be extra tuples in Children that do not appear in
People. But if our index was built correctly we know that an additional constraint holds:

C ′ ::= forall (c in Children)

exists (p in Person)

where p.name = c.name ∧ p.age = c.age

As such, we may chase Q′ with C ′ (using the identity substitution) to obtain an equivalent query:

Q′′ ::= for (c in Children) (p in Person)

where c.age > 16 ∧ c.age < 18 ∧
p.name = c.name ∧ p.age = c.age

return c.name

Now we can see that the identity substitution is a homomorphism Q′′ → U (again owing to the fact that
p.name = c.name). We have thus concluded that Q′′ = Q′ = Q = U , as required.

7 Example - Probabilistic Movies

Now that we have, at last, proved the equivalence of our Movies query and smaller Movies query for UCLID
monads, we can turn from the set monad to the probability monad. In this section, we define the probability
monad, describe the meaning of our Movies query in it, and then demonstrate that semantic optimization
still makes sense.

7.1 The Probability Monad

The probability monad is used in functional programming as a way to represent non-deterministic computa-
tion while preserving referential transparency (similar to how the IO monad is used) [15]. The values in the
probability monad are probability distributions, which we will represent as lists of pairs of events and floats,
such that the floats sum to one. binding m with f means to condition f on m. In Haskell, we have:

type P a = [(a, Float)]

instance Monad P where

return x = [(x, 1.0)]

bind p f = [(y, px*py) | (x, px) <- p, (y, py) <- f x]

16

This definition is somewhat simplified, because as-written this monad does not have a zero and the list may
contain, for example, (a, 0.1) and (a, 0.1) instead of (a, 0.2). Nevertheless, it is relatively straightforward to
add a zero by wrapping this monad in the Maybe monad, and to normalize the list of events. Rather than
focusing on the details, we will describe a (biased) dice-rolling example:

data Dice = One | Two | Three | Four

roll :: P Dice

roll = [(One, 0.25), (Two, 0.25),

(Three, 0.1), (Four, 0.4)]

win :: Dice -> P Bool

win Three = return True

win Four = return True

win _ = return False

test :: P Bool

test = bind roll win

Here, test evaluates to

[(True, 0.5), (False, 0.5)]

as we would expect. Intuitively, the probability monad is idempotent because adding a generator corresponds
to taking another sample, and independent samples are exactly that: independent. We can test this by
running

test’ :: P Bool

test’ = bind roll (_ -> test1)

which does indeed evaluate to the same thing as test. Sophisticated probabilistic behavior can be described
using this simple representation; see [15] for details.

7.2 Constraints

What are we to make of our Movies example in this monad? First, in this monad instances correspond to
probabilistic databases; in other words, instances are sets of tuples, where each tuple has a corresponding
probability. Here is an example instance:

data Movie = Movie { title:: String,

director:: String,

actor:: String }

movies1 = [(Movie "T" "D" "A", 0.75),

(Movie "T" "D" "B", 0.25)]

Our functional dependency holds in movies1; recall that the functional dependency holds when:

for (x in Movies) (y in Movies)

where x.title = y.title

return (x : x, y : y)

=

for (x in Movies) (y in Movies)

where x.title = y.title ∧ x.director = y.director

return (x : x, y : y)

17

In movies1, both sides evaluate to

x y

(T,D,A) (T,D,A) .5625

(T,D,A) (T,D,B) .1875

(T,D,B) (T,D,A) .1875

(T,D,B) (T,D,B) .0625

In a different instance, movies2:

movies2 = [(Movie "T" "D1" "A", 0.75),

(Movie "T" "D2" "B", 0.25)]

the left hand side evaluates to

x y

(T,D1, A) (T,D1, A) .5625

(T,D1, A) (T,D2, B) .1875

(T,D2, B) (T,D1, A) .1875

(T,D2, B) (T,D2, B) .0625

whereas the right hand size evaluates to zero. Intuitively, we might expect the right hand side to evaluate
to, in analogy with the non-probabilistic case,

x y

(T,D1, A) (T,D1, A) .5625

(T,D2, B) (T,D2, B) .0625

However, this is not a probability distribution – the numbers do not sum to one. In any case, the two sides
are not equivalent, and the constraint does not hold in movies2.

7.3 Optimization

We are now in a position to verify that our Movies query and optimized sub-query give the same result
when evaluated on movies1 but a different result when evaluated on movies2. Recall the two queries are:

for (m1 in Movies) (m2 in Movies)

where m1.title = m2.title

return (m1.director,m2.actor)

and

for (m in Movies)

return (m.director,m.actor)

When run on movies1, both the optimized and unoptimized queries yield:

(D,A) .75

(D,B) .25

When run on movies2, the unoptimized query yields:

(D1, A) .5625

(D1, B) .1875

(D2, A) .1875

(D2, B) .0625

18

whereas the optimized query yields:

(D1, A) .75

(D2, B) .25

Thus we can see that tableaux minimization is semantics preserving when the constraint holds, and otherwise
not.

Although probabilistic functional programming has developed into a field in its own right, probabilistic
data management is only now starting to be explored. As such, the connections between the two areas is still
unclear. However, whereas we associate a probability to each tuple, recent work in the database community
associates a probability to an entire relation [16]. For now we remark only that this connection was quite
unexpected, at it is likely that entirely new optimization methods for probabilistic programming languages
can be developed based on this technique.

8 Conclusion

We have barely scratched the surface of how the chase may be used to reason about queries; in particular,
we have only described how to use the chase to minimize monad comprehensions. Although we are moti-
vated by the trend towards using functional programming languages in domains rich in constraints, such as
large-scale collection processing and functional-logic programming, we believe that this connection between
programming language theory and relational database theory is sure to yield additional insights. Indeed, the
soundness of the chase for the probability monad appears to have been overlooked until now, and it seems
likely that entirely new optimization techniques for probabilistic programming languages can be developed
to exploit it.

We are currently working to design a programming language based on monad comprehensions and folds
over algebraic datatypes that is a suitable intermediate form for many current large-scale data processing
systems. Our compiler for this language performs semantic optimization as described in this paper and can
serve as a reference implementation for applying these techniques to other systems. We are confident that
the chase can bring the same benefits to a much larger class of systems as it has to relational databases.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in relational databases. ACM Trans.
Database Syst., 4:297–314, September 1979.

[3] S. Antoy and M. Hanus. Functional logic programming. Commun. ACM, 53:74–85, April 2010.

[4] S. Balakrishnan, V. Chu, M. A. Hernández, H. Ho, R. Krishnamurthy, S. X. Liu, J. H. Pieper, J. S.
Pierce, L. Popa, C. M. Robson, L. Shi, I. R. Stanoi, E. L. Ting, S. Vaithyanathan, and H. Yang. Midas:
integrating public financial data. In Proceedings of the 2010 international conference on Management
of data, SIGMOD ’10, pages 1187–1190, New York, NY, USA, 2010. ACM.

[5] R. Bird and O. de Moor. Algebra of programming. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1997.

[6] G. E. Blelloch and J. Greiner. A provable time and space efficient implementation of nesl. In ICFP,
pages 213–225, 1996.

[7] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension syntax. SIGMOD Rec.,
23(1):87–96, 1994.

[8] M. M. T. Chakravarty, R. Leshchinskiy, S. P. Jones, G. Keller, and S. Marlow. Data parallel haskell: a
status report. In DAMP 2007.

19

[9] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational data
bases. In STOC ’77: Proceedings of the ninth annual ACM symposium on Theory of computing, pages
77–90, New York, NY, USA, 1977. ACM.

[10] P. e. a. Cudre-Mauroux. A demonstration of scidb: A science-oriented dbms. In VLDB’09: Proceedings
of the 2009 VLDB Endowment. VLDB Endowment, August 2009.

[11] A. Deutsch, A. Nash, and J. Remmel. The chase revisited. In PODS ’08: Proceedings of the twenty-
seventh ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 149–
158, New York, NY, USA, 2008. ACM.

[12] A. Deutsch, L. Popa, and V. Tannen. Query reformulation with constraints. SIGMOD Rec., 35:65–73,
March 2006.

[13] L. Erkok. Value recursion in monadic computations. PhD thesis, Oregon Health & Science University,
2002. AAI3063791.

[14] M. Erwig and S. Kollmansberger. Probabilistic functional programming in haskell. Journal of Functional
Programming, 2005.

[15] E. A. et al. The Fortress Language Specification. Technical report, Sun Microsystems, Inc., 2007.

[16] R. Fagin, B. Kimelfeld, and P. G. Kolaitis. Probabilistic data exchange. In Proceedings of the 13th
International Conference on Database Theory, ICDT ’10, pages 76–88, New York, NY, USA, 2010.
ACM.

[17] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The Complete Book. Prentice Hall
Press, Upper Saddle River, NJ, USA, 2008.

[18] B. R. Gaster and M. P. Jones. A polymorphic type system for extensible records and variants. Technical
Report NOTTCS-TR-96-3, Department of CS, University of Nottingham, November 1996.

[19] N. Ghani and P. Johann. Monadic augment and generalised short cut fusion. J. Funct. Program.,
17(6):731–776, 2007.

[20] T. Grust. Monad Comprehensions. A Versatile Representation for Queries. In The Functional Approach
to Data Management, P.M.D. Gray and L. Kerschberg and P.J.H. King and A. Poulovassilis (eds.).
Springer Verlag, 2003.

[21] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber. Ferry: database-supported program execution. In
SIGMOD ’09: Proceedings of the 35th SIGMOD international conference on Management of data, pages
1063–1066, New York, NY, USA, 2009. ACM.

[22] L. M. Haas, M. A. Hernndez, L. Popa, M. Roth, and H. Ho. Clio grows up: From research prototype
to industrial tool. In SIGMOD 05.

[23] J. M. Hellerstein. The declarative imperative: experiences and conjectures in distributed logic. SIGMOD
Rec., 39:5–19, September 2010.

[24] Q. heng, J. Gryz, F. Koo, T. Y. C. Leung, L. Liu, X. Qian, and K. B. Schiefer. Implementation of two
semantic query optimization techniques in db2 universal database. VLDB ’99, 1999.

[25] F. Henglein. Large-scale sound and precise program analysis: technical persepctive. Commun. ACM,
53:114–114, August 2010.

[26] G. Hutton. A tutorial on the universality and expressiveness of fold. J. Funct. Program., 9(4):355–372,
1999.

[27] M. Isard and Y. Yu. Distributed data-parallel computing using a high-level programming language. In
SIGMOD ’09.

20

[28] C. B. Jay, M. I. Cole, M. Sekanina, and P. Steckler. A monadic calculus for parallel costing of a
functional language of arrays. In Euro-Par’97 Parallel Processing, volume 1300 of Lecture Notes in
Computer Science, pages 650–661. Springer, 1997.

[29] D. J. King and P. Wadler. Combining monads. In Proceedings of the 1992 Glasgow Workshop on
Functional Programming, pages 134–143, London, UK, 1993. Springer-Verlag.

[30] S. K. Lellahi and V. Tannen. A calculus for collections and aggregates. In CTCS ’97, pages 261–280,
London, UK, 1997. Springer-Verlag.

[31] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses, envelopes
and barbed wire. In Proceedings of the 5th ACM conference on Functional programming languages and
computer architecture, pages 124–144, New York, NY, USA, 1991. Springer-Verlag New York, Inc.

[32] E. Meijer and G. Hutton. Bananas in space: extending fold and unfold to exponential types. In
FPCA ’95: Proceedings of the seventh international conference on Functional programming languages
and computer architecture, pages 324–333, New York, NY, USA, 1995. ACM.

[33] E. Meijer and J. Jeuring. Merging monads and folds for functional programming. In Advanced Functional
Programming, First International Spring School on Advanced Functional Programming Techniques-
Tutorial Text, pages 228–266, London, UK, 1995. Springer-Verlag.

[34] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In SIGMOD 08.

[35] A. Pfeffer. Ibal: A probabilistic rational programming language. In In Proc. 17th IJCAI, pages 733–740.
Morgan Kaufmann Publishers, 2001.

[36] L. Popa and V. Tannen. An equational chase for path-conjunctive queries, constraints, and views. In
ICDT 99.

[37] P. Wadler. Comprehending monads. In Mathematical Structures in Computer Science, pages 61–78,
1992.

[38] L. Wong. Kleisli, a functional query system. J. Funct. Prog, 10, 1998.

[39] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-reduce-merge: simplified relational data
processing on large clusters. In SIGMOD ’07, pages 1029–1040, 2007.

21

Theorem (Soundess of Chase)
Let

Q ::= for
−−−−−−→
(x in P)

where C(−→x)

return E(−→x)

d ::= forall
−−−−−→
(r in R)

where B1(−→r)

exists
−−−−−→
(s in S)

where B2(−→r ,−→s)

And suppose h : front(d)→ Q. Then for every I such that I |= d, we have that Q(I) = Q′(I), where

Q′ ::= for
−−−−−−→
(x in P)

−−−−−→
(s in S)

where C(−→x) ∧B2(h(−→r),−→s)

return E(−→x)

Reminder: for
−−−−−→
(a in A) X(−→a) denotes

do a0 ← A0

. . .

aN ← AN

X(a0, . . . , aN)

Do-notation has the standard definition in terms of monadic bind. Also, where P Q denotes if P then Q else zero.

22

Proof. Choose I |= d. Recall that h : front(d) → Q means that h(
−−−−→
r in R) ⊆

−−−−→
x in P and C(−→x) `

B1(h(−→r)). We will re-write Q into Q′ in 5 steps :

Q ::= for
−−−−−−→
(x in P)

where C(−→x)

return E(−→x)

C(−→x) ` B1(h(−→r)) = (1)

for
−−−−−−→
(x in P)

where C(−→x) ∧B1(h(−→r))

return E(−→x)

h(
−−−−→
r in R) ⊆

−−−−→
x in P = (2)

for
−−−−−−→
(x in P)

−−−−−−→
(v in R)

where C(−→x) ∧B1(−→v) ∧ −→v = h(−→r)

return E(−→x)

d holds = (3)

for
−−−−−−→
(x in P)

−−−−−−→
(v in R)

−−−−−→
(s in S)

where C(−→x) ∧B1(−→v) ∧B2(−→v ,−→s) ∧ −→v = h(−→r)

return E(−→x)

h(
−−−−→
r in R) ⊆

−−−−→
x in P = (4)

for
−−−−−−→
(x in P)

−−−−−→
(s in S)

where C(−→x) ∧B1(h(−→r)) ∧B2(h(−→r),−→s)

return E(−→x)

C(−→x) ` B1(h(−→r)) = (5)

Q′ ::= for
−−−−−−→
(x in P)

−−−−−→
(s in S)

where C(−→x) ∧B2(h(−→r),−→s)

return E(−→x)

Note that steps 4 and 5 are the same as 1 and 2, so we will just prove steps 1, 2, and 3.

1. The first step is simple:

for
−−−−−−→
(x in P)

where C(−→x)

return E(−→x)

C(−→x) ` B1(h(−→r)) =

for
−−−−−−→
(x in P)

where C(−→x) ∧B1(h(−→r))

return E(−→x)

Because C(−→x) ` B1(h(−→r)), we know that B1(h(−→r)) evaluates to true whenever C(−→x) does. Hence,
C(−→x) is equivalent to C(−→x) ∧B1(h(−→r)), and so this step is semantics-preserving.

23

2. We must show that

for
−−−−−−→
(x in P)

where C(−→x) ∧B1(h(−→r))

return E(−→x)

h(
−−−−→
r in R) ⊆

−−−−→
x in P =

for
−−−−−−→
(x in P)

−−−−−−→
(v in R)

where C(−→x) ∧B1(−→v) ∧ −→v = h(−→r)

return E(−→x)

We do this in four steps:

for
−−−−−−→
(x in P)

where C(−→x) ∧B1(h(−→r))

return E(−→x)

axiom with h(
−−−−→
r in R) ⊆

−−−−→
x in P = (a)

for
−−−−−−→
(x in P)

where C(−→x) ∧B1(h(−→r)) ∧

exists
−−−−−−→
(v in R) where −→v = h(−→r)

return E(−→x)

v /∈ fv(C(−→x), B1(h(−→r))) = (b)

for
−−−−−−→
(x in P)

where exists
−−−−−−→
(v in R) where C(−→x) ∧B1(h(−→r)) ∧ −→v = h(−→r)

return E(−→x)

idempotency = (c)

for
−−−−−−→
(x in P)

−−−−−−→
(v in R)

where C(−→x) ∧B1(h(−→r)) ∧ −→v = h(−→r)

return E(−→x)

congruence = (d)

for
−−−−−−→
(x in P)

−−−−−−→
(v in R)

where C(−→x) ∧B1(−→v) ∧ −→v = h(−→r)

return E(−→x)

We examine each of these in turn:

24

(a) We want to show that exists
−−−−−−→
(v in R) where−→v = h(−→r) always evaluates to true in this particular

context. In the set monad, this is true because ∀a ∈ A,∃a′ ∈ A, a = a′ is valid. We hence require
this as axiom. This axiom also holds for lists and bags.

(b) Here we use case analysis on C(−→x (and B1(h(−→r)(. When they are both true, the two sides are
obviously equal. When either of them is false, the lhs will be zero, and the rhs is equal to

where exists
−−−−−−→
(v in R) where false return E(−→x)

which, by definition of constraints, expands to

where (return L(−) = for
−−−−−−→
(v in R) where false return L(−)) return E(−→x)

This will evaluate to false provided that

return x 6= zero

which we will assume as an axiom.

(c) Here we apply the idempotency axiom to the query below the outer loop. Recall that the axiom
states that when −→a /∈ fv(E),

where exists
−−−−−→
(a in A) where P (−→a) return E = for

−−−−−→
(a in A) where P (−→a) return E

(d) This is a straightfoward consequence of the equality −→v = h(−→r).

25

3. We must show that

for
−−−−−−→
(x in P)

−−−−−−→
(v in R)

where C(−→x) ∧B1(−→v) ∧ −→v = h(−→r)

return E(−→x)

d holds =

for
−−−−−−→
(x in P)

−−−−−−→
(v in R)

−−−−−→
(s in S)

where C(−→x) ∧B1(−→v) ∧B2(−→v ,−→s) ∧ −→v = h(−→r)

return E(−→x)

Recall that

d ::= forall
−−−−−→
(r in R)

where B1(−→r)

exists
−−−−−→
(s in S)

where B2(−→r ,−→s)

By definition (the meaning of a constraint is that its front equals its back), this unfolds to

for
−−−−−→
(r in R)

where B1(−→r)

return L(−→r)

=

for
−−−−−→
(r in R)

−−−−−→
(s in S)

where B1(−→r) ∧B2(−→r ,−→s)

return L(−→r)

Assuming the uniformity propery (which holds for sets), we have instead, for any X,

for
−−−−−→
(r in R)

where B1(−→r)

X(−→r)

=

for
−−−−−→
(r in R)

−−−−−→
(s in S)

where B1(−→r) ∧B2(−→r ,−→s)

X(−→r)

We then use the above (call the above lemma d-holds), and two additional lemmas, called split-
generators and split-equalities, to get semantics preservation:

26

for
−−−−−−→
(x in P)

−−−−−−→
(v in R)

where C(−→x) ∧B1(−→v) ∧ −→v = h(−→r)

return E(−→x)

split-generators =

for
−−−−−−→
(x in P)

where C(−→x)

for
−−−−−−→
(v in R)

where B1(−→v) ∧ −→v = h(−→r)

return E(−→x)

split-equalities =

for
−−−−−−→
(x in P)

where C(−→x)

for
−−−−−−→
(v in R)

where B1(−→v)

where −→v = h(−→r) return E(−→x)

d− holds =

for
−−−−−−→
(x in P)

where C(−→x)

for
−−−−−−→
(v in R)

−−−−−→
(s in S)

where B1(−→v) ∧B2(−→v ,−→s)

where −→v = h(−→r) return E(−→x)

split-equalities =

for
−−−−−−→
(x in P)

where C(−→x)

for
−−−−−−→
(v in R)

−−−−−→
(s in S)

where B1(−→v) ∧B2(−→v ,−→s) ∧ −→v = h(−→r)

return E(−→x)

split-generators =

for
−−−−−−→
(x in P)

−−−−−−→
(v in R)

−−−−−→
(s in S)

where C(−→x) ∧B1(−→v) ∧B2(−→v ,−→s) ∧ −→v = h(−→r)

return E(−→x)

We will now justify the first uses of split-generators and split-equalities; the second uses are similar
(although in the reverse directions).

To justify split-generators, because both the lhs and rhs begin with for
−−−−−−→
(x in P) we would like that

the following equality holds between the “rest” of the lhs and rhs:

27

for
−−−−−−→
(v in R)

where C(−→x) ∧B1(−→v) ∧ −→v = h(−→r)

return E(−→x)

=

where C(−→x)

for
−−−−−−→
(v in R)

where B1(−→v) ∧ −→v = h(−→r)

return E(−→x)

When C(−→x) evaluates to true, the two sides are obviously equivalent. When C(−→x) evaluates to false
both sides are zero because of the monad-zero law: for any f ,

for
−−−−−−→
(v in R) where false f = zero

To justify split-equalities, because both the lhs and rhs begin with for
−−−−−−→
(v in R) we would like that

the following equality holds between the “rest” of the lhs and rhs:

where B1(−→v) ∧ −→v = h(−→r)

return E(−→x)

=

where B1(−→v)

where −→v = h(−→r) return E(−→x)

We reason again by case analysis. Suppose B1(−→v) is false. Then both sides are zero. Suppose B1(−→v)
is true. Now, suppose −→v = h(−→r) is false. Then both sides are zero. Suppose −→v = h(−→r) is true. Then
both sides are return E(−→x), as required.

28

	tr-02-11.pdf
	Introduction
	Monads
	Examples
	Notation

	Queries
	Constraints
	Embedded Dependencies

	The Chase
	Homomorphisms
	The Chase
	Soundness
	UCLID Monads
	Acyclicity

	Tableaux Minimization
	Example - Movies
	Example - Minimization without Constraints
	Example - Indexing

	Example - Probabilistic Movies
	The Probability Monad
	Constraints
	Optimization

	Conclusion

