
Functional Query Languages
with Categorical Types

Ryan Wisnesky

November 2013

Introduction

I My dissertation concerns functional query languages –
simply typed λ-calculi (STLC) extended with operations for
data processing.

I Differences from functional programming languages:
I Purely functional and total
I Data processing operations chosen for efficiency
I Optimization by cost-guided search through equivalent

programs

I Traditional examples: Nested Relational Calculus, SQL/PSM
I NoSQL examples: Data Parallel Haskell, Links, LINQ,

Jaql-Pig [MapReduce]

2 / 34

Outline

I Functional query languages with categorical types can do
useful things that traditional functional query languages can’t.

I By adding a type of propositions to STLC, we obtain a query
calculus that is both higher-order and unbounded.

I By adding identity types to the STLC, we obtain a language
where data integrity constraints can be expressed as types.

I By adding types of categories to STLC, we obtain a query
language for a proposed successor to the relational model.

3 / 34

Chapter 1: Generalizing Codd’s Theorem

I Adding a type of propositions to the STLC yields
higher-order logic (HOL).

I We prove that every hereditarily domain independent HOL
program can be translated into the nested relational calculus
(NRC).

I Why is this useful?
I We obtain a query calculus that is higher-order (useful for

complex objects) and has unbounded comprehension
(useful for negation).

I Related work:

Higher-order First-order

Bounded NRC (Wong) RC (Codd)
Unbounded HOL (this talk) Set theory (Abiteboul)

4 / 34

Relational Calculus and Algebra

I A relational calculus expression is a first-order
comprehension over relations:

{ x1, . . . , xn | FOL(x1, . . . , xn) }

I Projection: { x | ∃y.R(x, y) }
I Cartesian product: { x, y | R(x) ∧ R(y) }
I Composition: { x, z | ∃y.R1(x, y) ∧ R2(y, z) }

I A relational algebra expression consists of σ, π,×,∪,−
I Composition: π0,3(σ1=2(R1 × R2))
I Conjunctive queries: π(σ(R1 × . . . × Rn))

5 / 34

Codd’s Theorem Example
I We will translate

{ x | ∀yR(x, y) } = { x | ¬∃y¬R(x, y) }

I to relational algebra by constructing the active domain adom:

adom := π1(R) ∪ π2(R)

¬R(x, y) := adom × adom − R

∃y¬R(x, y) := π1 (adom × adom − R)

¬∃y¬R(x, y) := adom − π1 (adom × adom − R)

I The above query is independent of the quantification domain.
I When a query is not domain independent, the translation will

change its semantics:

{ x, y | ¬R(x, y) } = dom × dom − R , adom × adom − R

6 / 34

Higher-order Logic and Nested Relational Calculus

I HOL and NRC types:

t ::= D | 1 | t × t | t → prop | prop

I Terms of HOL (= STLC + equality):

e ::= x | λx : t.e | ee | () | (e, e) | e.1 | e.2 | e = e

I Terms of NRC + power set:

e ::= x | for x : t in e where e. return e | () | (e, e) | e.1 | e.2 | e = e

| Pe | ∅ | {e} | e ∪ e

I Key difference: HOL has unbounded comprehension with λ,
NRC has bounded quantification with for.

7 / 34

HOL and NRC examples

I HOL abbreviations:

true := () = () ...

I Singleton set of e:

λx : t.x = e (HOL) {e} (NRC)

I Empty set of type t:

λx : t.false (HOL) ∅ (NRC)

I Universal set of type t

λx : t.true (HOL) no NRC term - not domain independent

8 / 34

Translating HOL→ NRC

I Basic idea of translation: bound all λs by active domain query.

λx : t.e

⇒

for x : t in adom where e. return x

I adom is an NRC expression that computes the active domain.

9 / 34

Results

I Proving the correctness of the translation requires a lot of
category theory.

I I could only prove the theorem for hereditarily domain
independent programs.

I My proof fails for this HOL program:

(∅, λx : t.true).1

I Yet the translation is still correct.

I Mechanized the results in Coq.

10 / 34

Outline

I We study three types for functional query languages:
I Prop, a type of propositions
I Id, a type of identities
I Cat, a type of categories

11 / 34

Chapter 2: Reifying Constraints as Identity Types

I Adding identity types to the STLC yields a language where
data integrity constraints can be expressed as types.

I We prove that the chase optimization procedure is sound in
this language.

I Why is this useful?
I A compiler can optimize queries by examining types.

I Identity types express equality of two terms:

t ::= 1 | t × t | t → t | e = e

e ::= x | λx : t.e | ... | refl e : e = e

I Practical programming with identity types usually requires
other dependent types as well (c.f., Coq, Agda, etc).

12 / 34

Motivation for constraints as types

I This query returns tuples (d, a) where a acted in a movie
directed by d

for (m1 ∈ Movies) (m2 ∈ Movies)

s.t. m1.title = m2.title

return (m1.director,m2.actor)

I Only when Movies satisfies the functional dependency
title→ director is the above query is equivalent to

for (m ∈ Movies)

return (m.director,m.actor)

I Goal: express constraints as identity types to enable this kind
of type-directed optimization.

13 / 34

Embedded Dependencies (EDs)

I A functional dependency title→ director means that if two
Movies tuples agree on the title of a movie, they also agree on
the director of that movie:

forall (x ∈ Movies) (y ∈ Movies)

s.t. x.title = y.title,

exists −

s.t. x.director = y.director

I Constraints expressible in this ∀∃ form are called embedded
dependencies (EDs).

I By using the exists clause, EDs can express join
decompositions, foreign keys, inclusions, etc.

I The chase procedure re-writes relational queries using EDs.

14 / 34

EDs as equalities

I An ED d:
forall v1 ∈ Ri, . . . s.t. P(v1, . . .),

exists u1 ∈ Rk, . . . s.t. P′(v1, . . . , u1, . . .)

can be expressed as an equation between two
comprehensions, front(d) and back(d):

front(d) = back(d)

for v1 ∈ Ri, . . . for v1 ∈ Ri, . . . , u1 ∈ Rk, . . .

s.t. P(v1, . . .) s.t. P(v1, . . .) ∧ P′(v1, . . . , u1, . . .)

return (v1, . . .) return (v1, . . .)

I Key idea: to express an ED d in a language with identity
types, we use front(d) = back(d).

15 / 34

Example ED as equality

forall (x ∈ Movies) (y ∈ Movies)

s.t. x.title = y.title,

exists −

s.t. x.director = y.director

=

for (x ∈ Movies) (y ∈ Movies)

s.t. x.title = y.title,

return (x, y)

=

for (x ∈ Movies) (y ∈ Movies)

s.t. x.title = y.title ∧ x.director = y.director,

return (x, y)

16 / 34

Results

I The chase is sound for STLC + EDs as identity types.
I Our paper proof follows (Popa, Tannen), but also holds for

other kinds of structured sets, e.g., with probability
annotations.

I In a dependently typed language like Coq, where types are
first-class objects, programmers can manipulate data integrity
constraints directly:

Definition q (I: set Movie) (pf: d I) := ...

Definition I : set Movies := ...

Theorem d_holds_on_I : d I := ...

Definition q_on_I := q I d_hold_on_I.

17 / 34

Outline

I We study three types for functional query languages:
I Prop, a type of propositions
I Id, a type of identities
I Cat, a type of categories

18 / 34

Chapter 3: A Functorial Query Language

I Adding types of categories to the STLC yields a schema
mapping language for the functorial data model (FDM).

I We define FQL, a functional query language for the FDM, and
compile it to SQL/PSM.

I The FDM (Spivak) is a proposed successor to the relational
model, based on categorical foundations.

I Naturally bag, ID, and graph based - unlike the relational
model.

I Many relational results still apply.

I Why is my work useful?
I This works provides a practical deployment platform for the

FDM (SQL), and establishes connections between the FDM
and the relational model.

19 / 34

Functorial Schemas and Instances

I In the FDM (Spivak), database schemas are finitely
presented categories. For example:

Emp.manager.worksIn = Emp.worksIn

Emp

Emp manager worksIn
Alice Chris CS
Bob Bob Math

Chris Chris CS

Dept

Dept secretary
Math Bob
CS Alice

20 / 34

Functorial Data Migration

I A schema mapping F : S→ T is a constraint-respecting
mapping:

nodes(S)→ nodes(T) edges(S)→ paths(T)

I A schema mapping F : S→ T induces three adjoint data
migration functors:

I ∆F : T − inst → S − inst (like projection and selection)
I ΣF : S − inst → T − inst (like union)
I ΠF : S − inst → T − inst (like join)

I Functorial data migrations have a powerful normal form:

ΣF ◦ ΠF′ ◦ ∆F′′

21 / 34

FQL
I The category of schemas and mappings is cartesian closed.

I The FDM’s natural query language is the STLC + categories.

I Schemas T (T = finitely presented categories)

T ::= 1 | T × T | T → T | T

I Mappings F (F = schema mappings)

F ::= x | λx : T .F | FF | () | (F,F) | F.1 | F.2 | F

I T-Instances I (I = given database tables)

I ::= 1 | I × I | I → prop | prop | ∆FI | ΣFI | ΠFI | I

I T-Homomorphisms H

H ::= x | λx : I.H | HH | () | (H,H) | H.1 | H.2 | H = H

22 / 34

FQL Tutorial

23 / 34

FQL Schema Example
schema S = { nodes Employee, Department;

attributes

name : Department -> string,

first : Employee -> string,

last : Employee -> string;

arrows

manager : Employee -> Employee,

worksIn : Employee -> Department,

secretary : Department -> Employee;

equations

Employee.manager.worksIn = Employee.worksIn,

Department.secretary.worksIn = Department,

Employee.manager.manager = Employee.manager;

}

24 / 34

FQL Schema Viewer Example

25 / 34

FQL Instance Example

instance I : S = {

nodes

Employee -> {101, 102, 103},

Department -> {q10, x02};

attributes

first -> {(101, Alan), (102, Camille), (103, Andrey)},

last -> {(101, Turing), (102, Jordan), (103, Markov)},

name -> {(q10, AppliedMath), (x02, PureMath)};

arrows

manager -> {(101, 103), (102, 102), (103, 103)},

worksIn -> {(101, q10), (102, x02), (103, q10)},

secretary -> {(q10, 101), (x02, 102)};

}

26 / 34

FQL Instance Viewer

27 / 34

FQL Mapping Example
schema C = {

nodes T1, T2;

attributes

t1_ssn:T1->string,t1_first:T1->string,t1_last:T1->string,

t2_first:T2->string,t2_last:T2->string,t2_salary:T2->int;}

schema D = {

nodes T;

attributes

ssn0 : T -> string, first0 : T -> string,

last0: T -> string, salary0 : T -> int; }

mapping F : C -> D = {

nodes T1 -> T, T2 -> T;

attributes

t1_ssn->ssn0, t1_first->first0, t1_last->last0,

t2_last->last0, t2_salary->salary0, t2_first->first0; }

28 / 34

FQL Schema Mapping Viewer Example

29 / 34

Delta (Project and Select)

30 / 34

Pi (Product)

31 / 34

Sigma (Union)

32 / 34

Recap for FQL

I The functorial data model (FDM) is a proposed categorical
alternative to the relational model.

I Naturally bag, ID, and graph based (unlike the relational
model)

I Many relational results still apply:
I Every conjunctive query under bag semantics is expressible.
I Unions of conjunctive queries are still a normal form.

I I propose FQL, the first query language for the functorial data
model, and demonstrate how to compile it to SQL.

I Provides a practical deployment platform for the FDM, and
connects the FDM to relational database theory.

33 / 34

Conclusion

I Functional query languages with categorical types can do
useful things traditional functional query languages cannot:

I STLC + Prop (= HOL).
I Result: a translation to the nested relational calculus.
I Why: obtain a higher-order, unbounded query calculus.
I Future work: generalize the soundness proof.

I STLC + Id (⊆ Coq, Agda, NuPrl, etc)
I Result: soundness of the chase.
I Why: to optimize/program constrained databases in e.g., Coq.
I Future work: implement the chase as a Coq plug-in.

I STLC + Cat (= FQL)
I Result: SQL compiler for FQL.
I Why: connect FQL to database theory.
I Future work: updates, aggregation, negation.

34 / 34

