Functional Query Languages with Categorical Types

Ryan Wisnesky

November 2013

Introduction

- My dissertation concerns functional query languages simply typed λ-calculi (STLC) extended with operations for data processing.
- Differences from functional programming languages:
 - Purely functional and total
 - Data processing operations chosen for efficiency
 - Optimization by cost-guided search through equivalent programs
- Traditional examples: Nested Relational Calculus, SQL/PSM
- NoSQL examples: Data Parallel Haskell, Links, LINQ, Jaql-Pig [MapReduce]

Outline

- Functional query languages with categorical types can do useful things that traditional functional query languages can't.
- By adding a type of propositions to STLC, we obtain a query calculus that is both higher-order and unbounded.
- By adding identity types to the STLC, we obtain a language where data integrity constraints can be expressed as types.
- By adding types of categories to STLC, we obtain a query language for a proposed successor to the relational model.

Chapter 1: Generalizing Codd's Theorem

- Adding a type of propositions to the STLC yields higher-order logic (HOL).
 - We prove that every hereditarily domain independent HOL program can be translated into the nested relational calculus (NRC).
- Why is this useful?
 - We obtain a query calculus that is higher-order (useful for complex objects) and has unbounded comprehension (useful for negation).
- Related work:

	Higher-order	First-order
Bounded	NRC (Wong)	RC (Codd)
Unbounded	HOL (this talk)	Set theory (Abiteboul)

Relational Calculus and Algebra

A relational calculus expression is a first-order comprehension over relations:

$$\{x_1,\ldots,x_n\mid FOL(x_1,\ldots,x_n)\}$$

- ▶ Projection: $\{x \mid \exists y.R(x,y)\}$
- ► Cartesian product: $\{x, y \mid R(x) \land R(y)\}$
- ► Composition: $\{x, z \mid \exists y.R_1(x, y) \land R_2(y, z)\}$
- ▶ A **relational algebra** expression consists of $\sigma, \pi, \times, \cup, -$
- ▶ Composition: $\pi_{0,3}(\sigma_{1=2}(R_1 \times R_2))$
- ▶ Conjunctive queries: $\pi(\sigma(R_1 \times ... \times R_n))$

Codd's Theorem Example

We will translate

$$\{x \mid \forall y R(x, y)\} = \{x \mid \neg \exists y \neg R(x, y)\}$$

▶ to relational algebra by constructing the **active domain** *adom*:

$$adom := \pi_1(R) \cup \pi_2(R)$$

$$\neg R(x, y) := adom \times adom - R$$

$$\exists y \neg R(x, y) := \pi_1 \ (adom \times adom - R)$$

$$\neg \exists y \neg R(x, y) := adom - \pi_1 \ (adom \times adom - R)$$

- ► The above query is independent of the quantification domain.
- When a query is not domain independent, the translation will change its semantics:

$$\{x, y \mid \neg R(x, y)\} = dom \times dom - R \neq adom \times adom - R$$

Higher-order Logic and Nested Relational Calculus

HOL and NRC types:

$$t ::= D \mid 1 \mid t \times t \mid t \rightarrow \text{prop} \mid \text{prop}$$

► Terms of HOL (= STLC + equality):

$$e := x \mid \lambda x : t.e \mid ee \mid () \mid (e,e) \mid e.1 \mid e.2 \mid e = e$$

Terms of NRC + power set:

$$e := x \mid for \ x : t \ in \ e \ where \ e. \ return \ e \mid () \mid (e, e) \mid e.1 \mid e.2 \mid e = e$$

$$| \mathcal{P}e \mid \emptyset \mid \{e\} \mid e \cup e$$

► Key difference: HOL has **unbounded** comprehension with λ , NRC has **bounded** quantification with for.

HOL and NRC examples

HOL abbreviations:

$$true := () = ()$$
 ...

► Singleton set of *e*:

$$\lambda x : t.x = e \ (HOL) \qquad \{e\} \ (NRC)$$

Empty set of type t:

$$\lambda x$$
: t.false (HOL) \emptyset (NRC)

Universal set of type t

 $\lambda x : t.true \ (HOL)$ no NRC term - not domain independent

Translating HOL → NRC

▶ Basic idea of translation: bound all λ s by active domain query.

$$\lambda x : t.e$$
 \Rightarrow

for x: t in adom where e. return x

▶ *adom* is an NRC expression that computes the active domain.

Results

- Proving the correctness of the translation requires a lot of category theory.
- I could only prove the theorem for hereditarily domain independent programs.
 - My proof fails for this HOL program:

$$(\emptyset, \lambda x : t.true).1$$

- Yet the translation is still correct.
- Mechanized the results in Coq.

Outline

- We study three types for functional query languages:
 - Prop, a type of propositions
 - ► Id, a type of identities
 - Cat, a type of categories

Chapter 2: Reifying Constraints as Identity Types

- Adding identity types to the STLC yields a language where data integrity constraints can be expressed as types.
 - We prove that the chase optimization procedure is sound in this language.
- Why is this useful?
 - A compiler can optimize queries by examining types.
- Identity types express equality of two terms:

$$t ::= 1 \mid t \times t \mid t \to t \mid e = e$$
$$e ::= x \mid \lambda x : t.e \mid \dots \mid \text{refl } e : e = e$$

Practical programming with identity types usually requires other dependent types as well (c.f., Coq, Agda, etc).

Motivation for constraints as types

► This query returns tuples (*d*, *a*) where *a* acted in a movie directed by *d*

```
for (m_1 \in Movies) (m_2 \in Movies)
s.t. m_1.title = m_2.title
return (m_1.director, m_2.actor)
```

Only when Movies satisfies the functional dependency title → director is the above query is equivalent to

for
$$(m \in Movies)$$

return $(m.director, m.actor)$

 Goal: express constraints as identity types to enable this kind of type-directed optimization.

Embedded Dependencies (EDs)

A functional dependency title → director means that if two Movies tuples agree on the title of a movie, they also agree on the director of that movie:

```
forall (x \in Movies) (y \in Movies)
s.t. x.title = y.title,
exists -
s.t. x.director = y.director
```

- ► Constraints expressible in this ∀∃ form are called **embedded dependencies** (EDs).
 - By using the exists clause, EDs can express join decompositions, foreign keys, inclusions, etc.
- ► The **chase** procedure re-writes relational queries using EDs.

EDs as equalities

▶ An ED *d*:

forall
$$v_1 \in R_i, \dots$$
 s.t. $P(v_1, \dots)$,
exists $u_1 \in R_k, \dots$ s.t. $P'(v_1, \dots, u_1, \dots)$

can be expressed as an equation between two comprehensions, front(d) and back(d):

$$front(d) = back(d)$$

 $for v_1 \in R_i, ...$ $for v_1 \in R_i, ..., u_1 \in R_k, ...$
 $s.t. P(v_1, ...)$ $s.t. P(v_1, ...) \wedge P'(v_1, ..., u_1, ...)$
 $return (v_1, ...)$ $return (v_1, ...)$

Key idea: to express an ED d in a language with identity types, we use front(d) = back(d).

Example ED as equality

```
forall (x \in Movies) (y \in Movies)
    s.t. x.title = y.title,
    exists -
    s.t. x.director = y.director
for (x \in Movies) (y \in Movies)
s.t. x.title = y.title,
return (x, y)
for (x \in Movies) (y \in Movies)
s.t. x.title = y.title \wedge x.director = y.director,
return (x, y)
```

Results

- ► The chase is sound for STLC + EDs as identity types.
 - Our paper proof follows (Popa, Tannen), but also holds for other kinds of structured sets, e.g., with probability annotations.
- In a dependently typed language like Coq, where types are first-class objects, programmers can manipulate data integrity constraints directly:

```
Definition q (I: set Movie) (pf: d I) := ...
Definition I : set Movies := ...
Theorem d_holds_on_I : d I := ...
Definition q_on_I := q I d_hold_on_I.
```

Outline

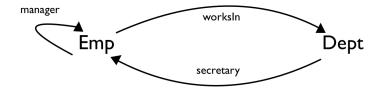
- We study three types for functional query languages:
 - Prop, a type of propositions
 - ▶ Id, a type of identities
 - ► Cat, a type of categories

Chapter 3: A Functorial Query Language

- Adding types of categories to the STLC yields a schema mapping language for the functorial data model (FDM).
 - We define FQL, a functional query language for the FDM, and compile it to SQL/PSM.
- The FDM (Spivak) is a proposed successor to the relational model, based on categorical foundations.
 - Naturally bag, ID, and graph based unlike the relational model.
 - Many relational results still apply.
- Why is my work useful?
 - This works provides a practical deployment platform for the FDM (SQL), and establishes connections between the FDM and the relational model.

Functorial Schemas and Instances

► In the FDM (Spivak), database schemas are finitely presented categories. For example:



Emp.manager.worksIn = Emp.worksIn

Emp			
Emp	manager	worksIn	
Alice	Chris	CS	
Bob	Bob	Math	
Chris	Chris	CS	

Dept			
Dept	secretary		
Math	Bob		
CS	Alice		

Functorial Data Migration

A schema mapping F : S → T is a constraint-respecting mapping:

$$nodes(S) \rightarrow nodes(T) \qquad edges(S) \rightarrow paths(T)$$

- A schema mapping F : S → T induces three adjoint data migration functors:
 - ▶ $\Delta_F : T inst \rightarrow S inst$ (like projection and selection)
 - ▶ $\Sigma_F : S inst \rightarrow T inst$ (like union)
 - ▶ $\Pi_F: S inst \rightarrow T inst$ (like join)
- Functorial data migrations have a powerful normal form:

$$\Sigma_F \circ \Pi_{F'} \circ \Delta_{F''}$$

FQL

- ► The category of schemas and mappings is cartesian closed.
 - ► The FDM's natural query language is the STLC + categories.
- ▶ Schemas T (\mathcal{T} = finitely presented categories)

$$T ::= 1 \mid T \times T \mid T \to T \mid \mathcal{T}$$

▶ Mappings F (\mathcal{F} = schema mappings)

$$F ::= x \mid \lambda x : T.F \mid FF \mid () \mid (F,F) \mid F.1 \mid F.2 \mid \mathcal{F}$$

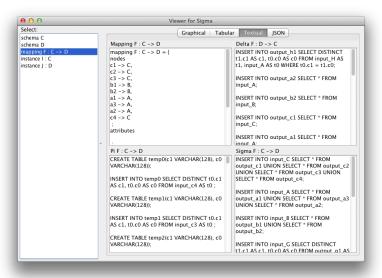
► T-Instances I (I = given database tables)

$$I ::= 1 \mid I \times I \mid I \rightarrow \text{prop} \mid \text{prop} \mid \Delta_F I \mid \Sigma_F I \mid \Pi_F I \mid I$$

▶ T-Homomorphisms H

$$H ::= x \mid \lambda x : I.H \mid HH \mid () \mid (H, H) \mid H.1 \mid H.2 \mid H = H$$

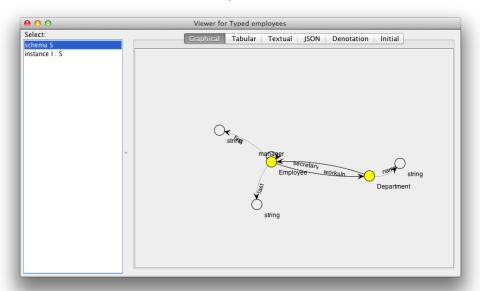
FQL Tutorial



FQL Schema Example

```
schema S = { nodes Employee, Department;
attributes
 name : Department -> string,
 first : Employee -> string,
 last : Employee -> string;
arrows
 manager : Employee -> Employee,
 worksIn : Employee -> Department,
 secretary : Department -> Employee;
equations
 Employee.manager.worksIn = Employee.worksIn,
 Department.secretary.worksIn = Department,
 Employee.manager.manager = Employee.manager;
```

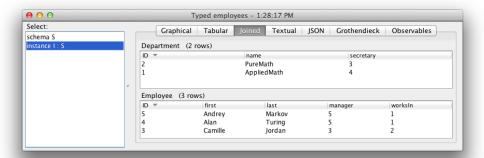
FQL Schema Viewer Example



FQL Instance Example

```
instance I : S = \{
nodes
  Employee \rightarrow {101, 102, 103},
  Department \rightarrow {q10, x02};
 attributes
  first -> \{(101, Alan), (102, Camille), (103, Andrey)\},
  last -> {(101, Turing), (102, Jordan), (103, Markov)},
 name -> {(q10, AppliedMath), (x02, PureMath)};
 arrows
  manager \rightarrow {(101, 103), (102, 102), (103, 103)},
  worksIn \rightarrow {(101, q10), (102, x02), (103, q10)},
  secretary \rightarrow \{(q10, 101), (x02, 102)\};
```

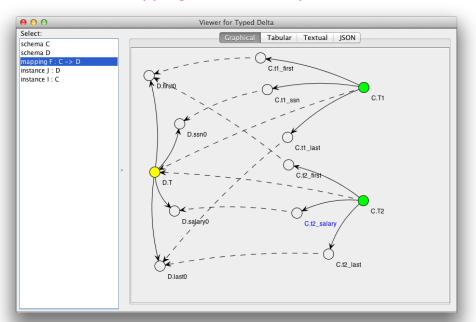
FQL Instance Viewer



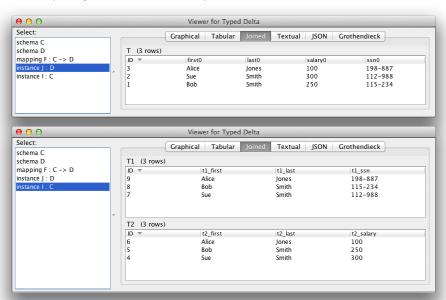
FQL Mapping Example

```
schema C = {
nodes T1, T2;
attributes
t1_ssn:T1->string,t1_first:T1->string,t1_last:T1->string,
t2_first:T2->string,t2_last:T2->string,t2_salary:T2->int;}
schema D = {
nodes T:
attributes
 ssn0 : T -> string, first0 : T -> string,
 last0: T -> string, salary0 : T -> int; }
mapping F : C \rightarrow D = \{
nodes T1 \rightarrow T, T2 \rightarrow T;
attributes
t1_ssn->ssn0, t1_first->first0, t1_last->last0,
t2_last->last0, t2_salary->salary0, t2_first->first0; }
```

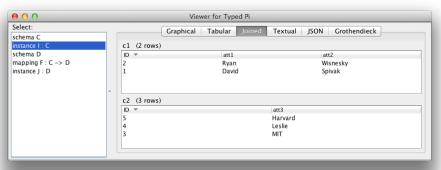
FQL Schema Mapping Viewer Example

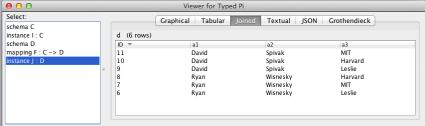


Delta (Project and Select)

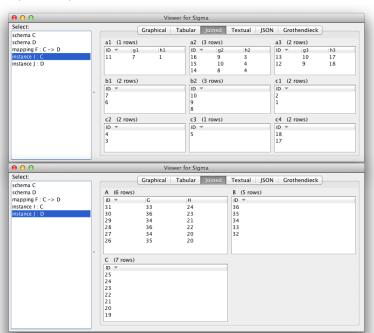


Pi (Product)





Sigma (Union)



Recap for FQL

- The functorial data model (FDM) is a proposed categorical alternative to the relational model.
 - Naturally bag, ID, and graph based (unlike the relational model)
- Many relational results still apply:
 - Every conjunctive query under bag semantics is expressible.
 - Unions of conjunctive queries are still a normal form.
- ▶ I propose FQL, the first query language for the functorial data model, and demonstrate how to compile it to SQL.
 - Provides a practical deployment platform for the FDM, and connects the FDM to relational database theory.

Conclusion

- Functional query languages with categorical types can do useful things traditional functional query languages cannot:
- ► STLC + Prop (= HOL).
 - Result: a translation to the nested relational calculus.
 - Why: obtain a higher-order, unbounded query calculus.
 - Future work: generalize the soundness proof.
- STLC + Id (⊆ Coq, Agda, NuPrl, etc)
 - Result: soundness of the chase.
 - Why: to optimize/program constrained databases in e.g., Coq.
 - Future work: implement the chase as a Coq plug-in.
- STLC + Cat (= FQL)
 - Result: SQL compiler for FQL.
 - Why: connect FQL to database theory.
 - Future work: updates, aggregation, negation.