Functional Query Languages
with Categorical Types

Ryan Wisnesky

November 2013

1 By

Introduction

v

My dissertation concerns functional query languages —
simply typed A-calculi (STLC) extended with operations for
data processing.

v

Differences from functional programming languages:
» Purely functional and total
» Data processing operations chosen for efficiency
» Optimization by cost-guided search through equivalent
programs

\4

Traditional examples: Nested Relational Calculus, SQL/PSM

NoSQL examples: Data Parallel Haskell, Links, LINQ,
Jagl-Pig [MapReduce]

\{

34

Outline

» Functional query languages with categorical types can do
useful things that traditional functional query languages can't.

» By adding a type of propositions to STLC, we obtain a query
calculus that is both higher-order and unbounded.

» By adding identity types to the STLC, we obtain a language
where data integrity constraints can be expressed as types.

» By adding types of categories to STLC, we obtain a query
language for a proposed successor to the relational model.

Chapter 1: Generalizing Codd’s Theorem

» Adding a type of propositions to the STLC yields
higher-order logic (HOL).
» We prove that every hereditarily domain independent HOL
program can be translated into the nested relational calculus
(NRC).

» Why is this useful?

» We obtain a query calculus that is higher-order (useful for
complex objects) and has unbounded comprehension
(useful for negation).

» Related work:

|| Higher-order | First-order

Bounded NRC (Wong) RC (Codd)
Unbounded || HOL (this talk) | Set theory (Abiteboul)

Relational Calculus and Algebra

v

A relational calculus expression is a first-order
comprehension over relations:

{xl""’xnIFOL(X]""’XH)}

v

Projection: { x | Ay.R(x,y) }
Cartesian product: { x,y | R(x) A R(y) }
Composition: { x,z | Ay.Ri(x,y) A R2(3,2) }

v

v

v

v

Composition: mp3(c1=2(R1 X R2))

v

Conjunctive queries: m(o(Ry X ... X Ry))

A relational algebra expression consists of o, 7, X, U, —

34

Codd’s Theorem Example

» We will translate
{x[YYR(x,»)} = {x[-Ty-R(x,y)}
» to relational algebra by constructing the active domain adom:
adom := m1(R) U mp(R)
=R(x,y) := adom X adom — R
Ay=R(x,y) := 71 (adom X adom — R)
=3dy-R(x,y) := adom — my (adom X adom — R)

» The above query is independent of the quantification domain.

» When a query is not domain independent, the translation will
change its semantics:

{x,y]| "R(x,y) } =dom xXdom—-R # adom X adom — R

34

Higher-order Logic and Nested Relational Calculus

v

HOL and NRC types:

t:=D|1|tXt|t— prop|prop

v

Terms of HOL (= STLC + equality):

e=x|Ax:telee|()|(e,e)]|el]|e2|e=¢

v

Terms of NRC + power set:

e =x|forx:tinewheree.returne|()|(e,e)|e.l|e2|e=¢

|Pe |0 |{e}|eUe

v

Key difference: HOL has unbounded comprehension with 4,
NRC has bounded quantification with for.

34

HOL and NRC examples

v

HOL abbreviations:

true .= () =()

v

Singleton set of e:

Ax:tx=e (HOL) {e} (NRC)

v

Empty set of type ¢:

Ax : tfalse (HOL) 0 (NRC)

v

Universal set of type ¢

Ax : t.true (HOL) no NRC term - not domain independent

34

Translating HOL — NRC

» Basic idea of translation: bound all As by active domain query.

Ax i t.e

for x : t in adom where e. return x

» adom is an NRC expression that computes the active domain.

Results

» Proving the correctness of the translation requires a lot of
category theory.

» | could only prove the theorem for hereditarily domain
independent programs.

» My proof fails for this HOL program:
(0, Ax : t.true).1

> Yet the translation is still correct.

» Mechanized the results in Coq.

10/34

Outline

» We study three types for functional query languages:

» Prop, a type of propositions
» Id, a type of identities
» Cat, a type of categories

11/34

Chapter 2: Reifying Constraints as Identity Types

» Adding identity types to the STLC yields a language where
data integrity constraints can be expressed as types.

» We prove that the chase optimization procedure is sound in
this language.

» Why is this useful?
» A compiler can optimize queries by examining types.

» Identity types express equality of two terms:
tu=1tXt|t>t|le=e

e=x|Ax:te|..|refle:e=¢e

» Practical programming with identity types usually requires
other dependent types as well (c.f., Coq, Agda, etc).

12/34

Motivation for constraints as types

» This query returns tuples (d, @) where a acted in a movie
directed by d

for (my € Movies) (my € Movies)
s.t. my litle = my. title
return (m;.director, m,.actor)

» Only when Movies satisfies the functional dependency
titte — director is the above query is equivalent to

for (m € Movies)

return (m.director, m.actor)

» Goal: express constraints as identity types to enable this kind
of type-directed optimization.

13/34

Embedded Dependencies (EDs)

» A functional dependency title — director means that if two
Movies tuples agree on the title of a movie, they also agree on
the director of that movie:

forall (x € Movies) (y € Movies)
s.t. x.title = y title,
exists -

s.t. x.director = y.director

» Constraints expressible in this Y3 form are called embedded
dependencies (EDs).

» By using the exists clause, EDs can express join
decompositions, foreign keys, inclusions, etc.

» The chase procedure re-writes relational queries using EDs.

14/34

EDs as equalities

» An ED d:
forallvi €R;,... s.t. P(vy,...),

existsu; € Ry,... s.t. P'(vy,...,uy,...)

can be expressed as an equation between two
comprehensions, front(d) and back(d):

front(d) = back(d)

fOI‘VIER,‘,... forvleR,-,...,uleRk,...
s.t. P(vy,...) s.t. P(Vl,...)/\P'(V],...,Ml,...)
return (vi,...) return (vi,...)

» Key idea: to express an ED d in a language with identity
types, we use front(d) = back(d).

15/34

Example ED as equality

forall (x € Movies) (y € Movies)
s.t. x.title = y.title,
exists —

s.t. x.director = y.director

for (x € Movies) (y € Movies)
s.t. x.title = y.title,

return (x,y)

for (x € Movies) (y € Movies)
s.t. x.title = y.title A x.director = y.director,

return (x,y)

16/34

Results
» The chase is sound for STLC + EDs as identity types.
» Our paper proof follows (Popa, Tannen), but also holds for

other kinds of structured sets, e.g., with probability
annotations.

» In a dependently typed language like Coq, where types are
first-class objects, programmers can manipulate data integrity
constraints directly:

Definition q (I: set Movie) (pf: d I) := ...

Definition I : set Movies := ...
Theorem d_holds_on_. I : d I := ...

Definition g_on_I := q I d_hold_on_I.

17/34

Outline

» We study three types for functional query languages:

» Prop, a type of propositions
» Id, a type of identities
» Cat, a type of categories

18/34

Chapter 3: A Functorial Query Language

» Adding types of categories to the STLC yields a schema
mapping language for the functorial data model (FDM).

» We define FQL, a functional query language for the FDM, and
compile it to SQL/PSM.

» The FDM (Spivak) is a proposed successor to the relational
model, based on categorical foundations.

» Naturally bag, ID, and graph based - unlike the relational
model.
» Many relational results still apply.

» Why is my work useful?

» This works provides a practical deployment platform for the
FDM (SQL), and establishes connections between the FDM
and the relational model.

19/34

Functorial Schemas and Instances

> In the FDM (Spivak), database schemas are finitely

presented categories. For example:

manager

TEmp

m

Dept

Emp.manager.worksin = Emp.worksIn

Emp
Emp | manager | worksin
Alice Chris CS
Bob Bob Math
Chris Chris CS

Dept
Dept | secretary
Math | Bob
CS Alice

20/34

Functorial Data Migration

» A schema mapping F : § — T is a constraint-respecting
mapping:

nodes(S) — nodes(T) edges(S) — paths(T)

» A schema mapping F : S — T induces three adjoint data
migration functors:

» Ap: T —inst —» S — inst (like projection and selection)
» Xp 1 S —inst > T — inst (like union)
» Iy : S —inst > T — inst (like join)
» Functorial data migrations have a powerful normal form:

EF [e] HF' (o] AF"

21/34

FQL

v

The category of schemas and mappings is cartesian closed.
» The FDM’s natural query language is the STLC + categories.

v

Schemas T (7 = finitely presented categories)

T:=1|TxT|\T->T|T

v

Mappings F (¥ = schema mappings)

Fu=x|Ax:T.F|FF|Q|WF,F)|F1|F2|F

v

T-Instances I (I = given database tables)

I::=1|1xI|I—- prop|prop|Arl |Xpl |Tlgl| T

v

T-Homomorphisms H

Hu=x|Ax:LH|HH|(|(H H) | H1|H2|H=H

22/34

FQL Tutorial

stance |- C
instance J : D

800 Viewer for Sigma
Select: Graphical | Tabular
schema C
chema D Mapping F: C -> D

JSON
DeltaF:D ->C

mapping F - C -> D = {
nodes

INSERT INTO output_h1 SELECT DISTINCT
tl.cl AS 1, t0.cO AS cO FROM input_H AS

cl->C, t1, input_A AS t0 WHERE t0.c1 = t1.c0;
2 ->C,
3->C, INSERT INTO output_a2 SELECT * FROM
bl->B, input_A;
b2 -> B,
al -> A, INSERT INTO output_b2 SELECT * FROM
a3 -> A, input_B;
a2 -> A,
4 ->C INSERT INTO output_c1 SELECT * FROM
H input_C;
attributes

INSERT INTO output_al SELECT * FROM
. innut A:
PiF:C->D SigmaF:C->D

/CREATE TABLE temp0(c1 VARCHAR(128), cO
\VARCHAR(128));

INSERT INTO temp0 SELECT DISTINCT t0.c1
AS €1, t0.c0 AS O FROM input_c4 AS t0 ;

CREATE TABLE temp1(c1 VARCHAR(128), <O
VARCHAR(128));

INSERT INTO temp1 SELECT DISTINCT t0.c1
AS €1, t0.€0 AS ¢0 FROM input_e3 AS t0 ;

(CREATE TABLE temp2(c1 VARCHAR(128), cO
\VARCHAR(128));

INSERT INTO input_C SELECT * FROM
output_c1 UNION SELECT * FROM output_c2
UNION SELECT * FROM output_c3 UNION
SELECT * FROM output_c4;

INSERT INTO input_A SELECT * FROM
output_al UNION SELECT * FROM output_a3
UNION SELECT * FROM output_a2;

INSERT INTQ input_B SELECT * FROM
output_bl UNION SELECT * FROM
output_b2:

INSERT INTO input_G SELECT DISTINCT

Tlel AS c1 10.c0 AS o) FROM outnut al A

23/34

FQL Schema Example

schema S = { nodes Employee, Department;

attributes

name : Department -> string,

first : Employee -> string,

last : Employee -> string;

arrows

manager : Employee -> Employee,
worksIn : Employee -> Department,

secretary : Department -> Employee;

equations

Employee.manager.worksIn = Employee.worksIn,
Department.secretary.worksIn = Department,
Employee.manager.manager = Employee.manager;

}

24/34

FQL Schema Viewer Example

Viewer for Typed employees

Tabular | Textual | JSON = Denotation | Initial]

oS i string

Department

25/34

FQL Instance Example

instance I : S = {

nodes
Employee -> {101, 102, 103},
Department -> {ql10, x02};

attributes

first -> {(101, Alan), (102, Camille), (103, Andrey)},
last -> {(101, Turing), (102, Jordan), (103, Markov)},
name -> {(ql®, AppliedMath), (x02, PureMath)};

arrows
manager -> {(101, 103), (102, 102), (103, 103)},
worksIn -> {(101, ql10), (102, x02), (103, gl0®)},
secretary -> {(ql®, 101), (x02, 102)};

}

26/34

FQL Instance Viewer

0.6

Select:

schema 5

—[Craphical =~ Tabular

Department (2 rows)

Textual JSON | Grothendieck = Observables]—

D - ‘name - secretary
2 PureMath 3
1 AppliedMath 4

Employee (3 rows)

D - first last
Markov
Turing

| manager [worksin

Jordan

27/34

FQL Mapping Example

schema C = {

nodes T1, T2;

attributes
tl_ssn:Tl->string,tl_first:Tl->string,tl_last:Tl->string,
t2_first:T2->string,t2_last:T2->string,t2_salary:T2->int;}

schema D = {

nodes T;
attributes
ssn® : T -> string, first® : T -> string,

last®: T -> string, salary® : T -> int; }

mapping F : C -> D = {

nodes Tl -> T, T2 -> T;

attributes

tl_ssn->ssn®, tl_first->first®, tl_last->lastO0,
t2_last->last®, t2_salary->salary®, t2_first->first®; }

28/34

FQL Schema Mapping Viewer Example

AL AL Viewer for Typed Delta .
Select:

Graphical Tabular | Textual @ JSON
schems € | Gephical | |

instance] : D
instance | : C

G _first

Delta (Project and Select)

2.9 MewegfoplypedDelia

Select: [Graphi(al | Tabular Textual = JSON | Grothendieck

schema C

schema D T (3 rows)

i D v [firstd [lasto | salaryD 'ssn0

3 Alice Jones 100 198-887
2 Sue Smith 300 112-988
1 Bob Smith 250 115-234

Viewer for Typed Delta

Select:

schema C

schema D

mapping F: C->D
instance) : D

[Craphical | Tabular Textual = JSON | Crothendieck
T1 (3 rows)

|t1_first t1_last tl_ssn

Alice Jones 198-887
Bob Smith 115-234
Sue Smith 112-988

|t2_first t2_last

t2_salary
Alice Jones 100
Bob Smith 250
Sue Smith 300

30/34

Pi (Product)

0.6 plemesforlypecibl a
fielech [Graphical = Tabular Textual = JSON | Grothendieck
schema C
cl (2 rows)
schema D D v latt1 |att2 |
mapping F: C-> D 2 Ryan Wisnesky
instance) : D 1 David Spivak

€2 (3 rows)

D - Latt3 |
5 Harvard

4 Leslie

3 MIT

Viewer for Typed P

IGraphi(aI | Tabular Textual = JSON | Grothendieck

schema C
instance | : C (6 rows)

schema D D v lal la2 la3
mapping F: C-> D David Spivak MIT
David Spivak Harvard
David Spivak Leslie
Ryan Wisnesky Harvard
Ryan Wisnesky

Ryan Wisnesky

31/34

Sigma (Union)

18.0.0.. Viewer for Sigma
Select: " L
Graphical | Tabular LIREGE Textual SON G k
e { Grapl) J
schema D al (1 rows) a2 (3 rows) a3 (2 rows)
mapping F: C -> D D~ al h1 [92 hz D~ a3 h3
11 7 1 16 9 3 13 10 17
15 10 4 12 9 18
14 8 4
bl (2 rows) b2 (3 rows) cl (2 rows)
D~ D D~
7 10 2
6 9 1
8
€2 (2 rows) €3 (1 rows) <4 (2 rows)
D - D - D v
4 5 18
3 17
800 Viewer for Sigma
Select: . G ieck
v [Graphical | Tabular Textual | JSON
schema D A (6 rows) B (5 rows)
mapping F: C -> D D v [H D v
instance |- C 31 33 24 36
D 30 36 23 35
29 34 21 34
28 36 22 33
27 34 20 32
26 35 20
C (7 rows)
D v
25
24
23
22
21
20
19
32/34

Recap for FQL

» The functorial data model (FDM) is a proposed categorical
alternative to the relational model.

» Naturally bag, ID, and graph based (unlike the relational
model)

» Many relational results still apply:

» Every conjunctive query under bag semantics is expressible.
» Unions of conjunctive queries are still a normal form.

» | propose FQL, the first query language for the functorial data
model, and demonstrate how to compile it to SQL.

» Provides a practical deployment platform for the FDM, and
connects the FDM to relational database theory.

33/34

Conclusion

» Functional query languages with categorical types can do
useful things traditional functional query languages cannot:

» STLC + Prop (= HOL).

» Result: a translation to the nested relational calculus.
» Why: obtain a higher-order, unbounded query calculus.
» Future work: generalize the soundness proof.

» STLC + Id (€ Coq, Agda, NuPrl, etc)

» Result: soundness of the chase.
» Why: to optimize/program constrained databases in e.g., Coq.
» Future work: implement the chase as a Coq plug-in.

» STLC + Cat (= FQL)

» Result: SQL compiler for FQL.
» Why: connect FQL to database theory.
» Future work: updates, aggregation, negation.

34/34

