
High-Level Rules for Integration and Analysis of
Data: New Challenges

Bogdan Alexe1, Douglas Burdick1, Mauricio A. Hernández1, Georgia
Koutrika2, Rajasekar Krishnamurthy1, Lucian Popa1, Ioana R. Stanoi1, and

Ryan Wisnesky3

1 IBM Almaden Research Center
{balexe,drburdic,mahernan,rajase,lpopa,irs}@us.ibm.com

2 HP Labs
koutrika@hp.com

3 Harvard University
School of Engineering and Applied Sciences

ryan@cs.harvard.edu

1 Introduction and Motivation

Data integration remains a perenially difficult task. The need to access, inte-
grate and make sense of large amounts of data has, in fact, accentuated in
recent years. There are now many publicly available sources of data that can
provide valuable information in various domains. Concrete examples of public
data sources include: bibliographic repositories (DBLP, Cora, Citeseer), online
movie databases (IMDB), knowledge bases (Wikipedia, DBpedia, Freebase), so-
cial media data (Facebook and Twitter, blogs). Additionally, a number of more
specialized public data repositories are starting to play an increasingly impor-
tant role. These repositories include, for example, the U.S. federal government
data, congress and census data, as well as financial reports archived by the U.S.
Securities and Exchange Commission (SEC).

However, in all of these cases, the data has become increasingly more het-
erogeneous and less structured. Even within one source (e.g., SEC or DBpedia),
bits and pieces of data about the same real-world entity (such as a person, a
company or a product) are often buried in text, html, XML, or other formats,
and spread over many documents. In order to make sense of all this data at the
aggregated level, it is necessary to build an entity or concept-centric view [10] of
the domain, where clean and rich entities, together with their relationships, are
aggregated from the myriad of unstructured or semi-structured pieces of data.
It is these entities and relationships that will provide the real value to a human
user or to the subsequent applications that need to consume information. In
fact, many companies (so called data aggregators) have started to emerge in this
space, aiming to create integrated value on top of the underlying raw data.

However, achieving the level of integration that is required in such practical
scenarios is a challenge. There are many types of techniques that need to be put
together in a complex data processing flow. These techniques include: informa-
tion extraction [11] (to produce structured records from text or semi-structured

II

data), cleansing and normalization (to be able to even compare string values
of the same type, such as a dollar amount or a job title), entity resolution [13]
(to link records that correspond to the same real-world entity or that are re-
lated via some other type of semantic relationship), mapping [14] (to bring the
extracted and linked records to a uniform schematic representation), and data
fusion [6] (to merge all the related facts into one integrated, clean object). In
practice, these steps are often implemented in general purpose languages (e.g.,
Java, Perl), using ETL tools, or using general data manipulation languages (e.g.,
XSLT, Pig Latin). Often, the emphasis is on the low-level operations (sort, pipe,
duplicate elimination, join, string matching, etc.) without a high-level view of
the data integration steps. Most of the time, there is no explicit entity or object
view, but rather tuples, arrays, key/value pairs.

In this paper, we advocate the need for a high-level language or framework to
describe the main logical operations of data integration (e.g., entity extraction,
entity resolution, mapping, fusion) and analysis (e.g., aggregation, view creation,
temporal analysis). We emphasize the logical specification aspects rather than
the physical implementation. In addition to ease of specification or programma-
bility, such a framework would also enable better readability, better reuse and
better customization of data integration and analysis (to other domains, other
tasks, other views). The target users of such framework are developers that need
to perform complex, industrial-strength data integration tasks.

We will illustrate the paper with an end-to-end scenario of integration that
is focused on people and company entities. This scenario is drawn from our
own experience, as part of the Midas project [3, 7] at IBM, with integrating
data from DBpedia and especially SEC, which we have used extensively as a
source for integration in the financial domain. Similar challenges or technologies
will apply to other scenarios of integration from public data sources. We will
focus our discussion on the high-level rules and declarations that are needed
to accomplish the various integration steps. For each of the important tasks,
the rules are shown in a candidate syntax that takes inspiration from existing
formalisms, languages and tools for information extraction, entity resolution and
schema mapping. However, rather than fixing on a concrete language, the goal is
to illustrate the features that need to be supported in such a language, as well as
the challenges. Coming up with an actual integrated language that combines all
these features together is a separate challenge in itself with many design choices.

This is mostly a vision paper, with the goal of raising the attention of inter-
ested researchers towards this area.

Note Some of the ideas and desiderata described in this article have sub-
sequently led to the development at IBM of a high-level integration language
called HIL [22].4 This language includes declarative constructs for entity reso-
lution and for mapping and fusion of data, and is now extensively used within
IBM for large-scale integration over structured and unstructured data (e.g., so-
cial media, news articles, financial disclosures, enterprise data, etc.). The exact

4 Thus, from a timeline point of view, this book chapter describes work that precedes
the development of HIL.

III

language design choices and primitives of HIL, as well as its compilation and
execution, are described in [22]. While HIL answers some of the research chal-
lenges outlined in this article, several important problems remain largely open,
such as the need for tools or systems to support large-scale data exploration or
to assist users with the actual development of a good set of data analysis rules.

1.1 Overview of the Paper

We start in Section 2 by describing some of the features of the data in DBpedia,
as well as the challenges involved in data exploration, which is a phase that
precedes the actual writing of the rules. We then illustrate some concrete rules
for extracting facts from DBpedia. Here, the output of an extraction rule has
a relatively simple structure (or schema), but the input is semi-structured and
largely heterogeneous. Extraction from completely unstructured data (i.e., text)
[11] is highly related in this context; however, in this paper, we focus our atten-
tion specifically on extraction from semi-structured data (e.g., RDF, or XML,
or JSON). We also note that extraction from text, technically, is of a different
nature and is discussed extensively elsewhere (e.g., [8]).

In addition to giving examples of extraction rules, we also include a discussion
of the need for automatic or semi-automatic extraction of structured records
that is based on data examples. Such technology, while non-trivial, would be
particularly useful when the developer is in the exploration phase and does not
know enough about the data and its peculiarities. Based on a few examples
that are representative of the type of entities that the developer is interested
to extract, the system must first be able to derive all the other entries that are
“similar” to the given examples. More challenging, the system should come up
with a set of extraction rules that would result in such entries. While existing
work on query discovery based on data instances [18, 27] or on schema mapping
design based on examples [1, 21] may provide a starting point here, new types of
algorithms will have to be developed to account for highly heterogeneous data
with “less” schema (such as DBpedia).

The next integration component that we address is entity resolution, in Sec-
tion 3. Rather than looking at specific algorithms or implementations that match
records based on various similarity measures on their fields, we take a higher-
level approach where the goal is to provide the specification framework for entity
resolution. We advocate a framework that is based on logical constraints that
are similar, in spirit, to the dependencies used in data exchange [15]. However,
different from data exchange where the dependencies are source-to-target, our
entity resolution constraints are target-to-source: they define declaratively all the
desired properties of the target (i.e., of the links) in terms of the sources. Fur-
thermore, these constraints incorporate disjunction (of the alternative matching
rules that may apply), rely on user-defined functions for computing similarity
of values, and can include cardinality constraints (e.g., to express many-to-one
type of links). We include a discussion to illustrate the differences between this
framework and previous approaches such as the Dedupalog language [2].

IV

One of the main research problems that we outline, as part of declarative
entity resolution, is the compilation of the declarative constraints into an execu-
tion plan that produces a good instantiation of the links. An important related
question is formulating the semantics of the declarative constraints, which then
needs to be implemented by the execution plan. Finally, a major challenge for
entity resolution, which goes beyond the design of the specification language,
is the development of methods and tools to help users interactively resolve the
inherent ambiguities in their specification. These tools can help users refine the
declarative constraints, based on the actual data sets that need to be linked, to
ultimately achieve a high quality specification for entity resolution.

We discuss mapping and transformation, as well as data fusion and aggre-
gation aspects in Section 4. While there is work on schema mapping tools [14],
data exchange semantics [15], and data fusion methods [6], our goal is to develop
an expressive scripting language that allows developers to combine non-trivial
mapping, fusion and aggregation tasks (e.g., that are often not possible within
a schema mapping tool paradigm) with the declarative entity resolution and ex-
traction operations discussed earlier. At the same time, we emphasize simplicity
and ease of programming as important requirements for the language design.

We discuss several other related papers and systems in Section 5 and conclude
the paper in Section 6, where we reiterate the need for a single, unified framework
that incorporates all the aspects outlined in the previous sections.

2 Data Exploration and Extraction

The first step before the actual writing of extraction and integration rules is the
exploration phase, where a human user needs to understand what is in the source
data and what can be extracted. This step is usually expensive; any help that a
system or tool can provide in assisting the human user can be valuable. Even if
the user has an idea of what concepts need to be extracted, the form in which
these concepts manifest in the actual data source can vary significantly. Hence,
heterogeneity is a challenge.

We start with an example from DBpedia to illustrate the issues. We focus on
financial companies (e.g., Bank of America, Citigroup); the goal here will be to
extract structured records that are relevant for such financial companies and that
are deemed useful towards building the final integrated view. First, we assume
that the DBpedia data set is given as a set of JSON records, each corresponding
to one entity. A record has a subject field (which is also the identifier of that
entity), and then all the various properties recorded for that entity. This JSON
representation can be easily obtained from the RDF version of Dbpedia, which
records RDF triples of the form (subject, property, value).5 The conversion from
RDF to JSON is already a step towards a more unified view of the data, since it
yields full objects rather triples. However, the format of these objects is wildly
heterogeneous, even for the same “type” of entity, as we shall see shortly. A large

5 See the Ontology Infobox Properties data set at http://wiki.dbpedia.org/Downloads.

V

{
"assets”: “US$ 2.264 trillion",
"foundation": “1904",
"homepage": ["http://www.bankofamerica.com",

“http://www.bofa.com”],
"industry": ["Banking", “Financial services”]
"keyPeople": [
“Bryan Moynihan",
“(President and CEO)",
“Charles Holliday",
“(Chairman)"
],
"location": [
"Charlotte,_North_Carolina",
"United_States",
"North_Carolina"

],
"name": "Bank of America Corporation",
"numEmployees": "288000",
"slogan": "Bank of Opportunity",
"subject": "Bank_of_America",
"type": "Public_company",
"wikiPageUsesTemplate": "Template:infobox_company"

},

{
"areaServed": "Worldwide",
"assets": "$ 1.119 trillion (2007)",
"companyName": "Goldman_Sachs",
"companySlogan": "Our clients\' interests always come first",
"companyType": "Public_company",
"foundation": "1869",
"founder": ["Marcus_Goldman“, “Samuel Sachs”],
"homepage": "http://www.gs.com/",
"industry": "Finance_and_insurance",
"keyPeople": [
"Lloyd_Blankfein",
(Chairman & CEO)”,
"Gary_Cohn",
“(President & COO)”,
“David Viniar“,
“(Executive VP & CFO)”

],
"location": ["United_States", "New_York_City"],
"marketCap": "$ 65.91 billion (2007)",
"numEmployees": "30,522 (2007)",
"products": [
"Financial_services",
"Investment_bank"

],
"revenue": "$ 87.968 billion (2007)",
"subject": "Goldman_Sachs",
"wikiPageUsesTemplate": "Template:infobox_company"

},

Fig. 1. Sample DBpedia records.

part of the subsequent processing will be devoted to extracting the relevant parts
of the objects of interest, bringing the extracted parts to a uniform format, and
then linking and integrating them with data from other sources (e.g., SEC).

Figure 1 illustrates two sample input records, in JSON, corresponding to the
DBpedia entries for Bank of America and Goldman Sachs. Even though both of
these records represent entities of a similar type (i.e., financial institutions), there
is significant variation in the structure of the records (i.e., the attributes that are
present, their types), in the naming of the attributes, and in the values and for-
mat of the values that populate the attributes. For example, Goldman Sachs has
attributes such as “founder” and “marketCap”, while Bank of America does not
include these attributes. Goldman Sachs has a “companyName” attribute, while
the equivalent attribute for Bank of America is “name”. The “homepage” at-
tribute for Goldman Sachs is a single string, while the similar attribute for Bank
of America is an array of strings. Finally, the values themselves are not always
clean or cleanly organized. For example, Bank of America includes “Banking”
and “Financial services” under the “industry” attribute; the corresponding infor-
mation for Goldman Sachs is actually distributed over two attributes (“industry”
and “products”). Furthermore, the entries under the “keyPeople” attribute, in
both records, are a mixture of person names and positions (titles), without an
explicit tagging of the data.

VI

FinancialCompany =

for (r in DBpedia)

let industryTerms = extractIndustries (r.industry),

compName = extractCompanyName (r)

where contains (compName, “Bank|Insurance|Investment”) or

(some (i in industryTerms) satisfies

contains (i, “bank|banking|insurance|finance|financial”))

return {company_id: r.subject,

name: compName,

foundation: r.foundation,

industry: industryTerms,

revenue: cleanDollarAmount (r.revenue)

}

Fig. 2. Extraction rule for financial companies.

After exploring several more representative DBPedia entries for financial
companies, the user may decide on a set of important concepts to be extracted
from this collection of heterogeneous records. Each concept is based on a subset
of attributes and, hence, it is a piece of a schema. In our scenario, the user may
be interested in the following three concepts.

FinancialCompany (company id, name, foundation, industry, revenue, ...)
CompanyAddress (company id, street1, street2, zipcode, city, state, country)
KeyPeople (person name, titles, company name, age, biography, ...)

Note that, in general, the schema for these concepts must be open (see the
above ... notation) to account for possibly other attributes of interest that may
be added later. The high-level integration language will have to be flexible and
account for such open schema by either not requiring the user to explicitly hav-
ing to define the schemas of the concepts, or by using advanced programming
language features such as record polymorphism to represent extensible record
types [24, 25, 28].

Finally, other concepts can be defined later from either the same source
(DBPedia) or from other sources (e.g., SEC, as we will see later). All of these
extracted concepts will then be processed together, in the subsequent integration
flow, to generate clean target entities with richer structure.

We focus next on how to extract the data to populate such concepts from
the underlying collection of heterogeneous records.

2.1 Extraction Rules: Examples

Figure 2 gives a first example of a rule that extracts data for financial companies
from DBpedia. This rule populates into the FinancialCompany concept. There
may be other rules to further populate into this same concept (and possibly add
new attributes). Thus, the actual instance of a concept will be given by a union
of extraction rules.

VII

The rule uses an XQuery-like syntax (although other types of syntax could
also be used) to express the search for DBPedia records that match the charac-
teristics of a financial company and also to express the extraction of the relevant
attributes. Note the complex predicate that is used in the where clause to rec-
ognize a financial company. This predicate includes multiple string matching
conditions that are based on financial keywords. Note also the extensive pres-
ence of user-defined functions (UDFs) that are used for various purposes:

– to clean the data in the individual attributes. For example, cleanDollarAmount
is a function that transforms various heterogeneous string values that rep-
resent dollar amounts into a standardized form. Concretely, strings such as
“$ 87.968 billion (2007)” and “US$ 2.264 trillion” could be transformed into
“$87.96 billion” and “$2.26 trillion”, respectively.

– to extract certain expected strings from an input record or value (e.g., ex-
tractCompanyName from r and extractIndustries from r.industry).

– more generally, to account for the heterogeneity in the input data or struc-
ture. For example, extractIndustries must account for the fact that the input
r.industry could be a string such as “Finance and insurance” or an array such
as [“Banking”, “Financial services”]. The function must uniformly generate
an array of terms identifying the various relevant industries (i.e., [“finance”,
“insurance”] from the first input and [“banking”, “financial services”] from
the second input).
As another example, extractCompanyName has to account for the fact that
the company name can appear under various attributes in the input record r
(e.g., sometime name, and sometime companyName). Furthermore, the value
itself must be normalized (e.g., “Goldman Sachs” must be transformed to
“Goldman Sachs”).
Note that the extracted and normalized industry terms and company name
are used both in the predicate in the where clause that identifies a financial
company and in the output of the rule.

In Figure 3, we show another example of an extraction rule from DBPedia, to
produce records for the key people that are associated with the financial compa-
nies. As before, the rule makes use of UDFs to restrict to financial companies. An
additional UDF extractNameTitles is used to convert an array of strings into a set
of structured records with explicit name and titles fields. For example, the array
of uninterpreted strings that is the value of the keyPeople field in the “Goldman
Sachs” record in Figure 1 is converted into a set of three records:

{ name: “Lloyd Blankfein”, titles: [“Chairman”, “CEO”] }
{ name: “Gary Cohn”, titles: [“President”, “CEO”] }
{ name: “David Viniar”, titles: [“Executive VP”, “CFO”] }

Note that the above UDF must employ a name recognizer as well as a title
recognizer. Also, it must take into account the sequence in which the names and
the titles appear in the input string. In particular, the function must detect that
the titles of a person follow the actual person name, and also it must be able to
handle the absence of title information (e.g., two consecutive names).

VIII

KeyPeople =

for (r in Dbpedia)

let industryTerms = extractIndustries (r.industry),

compName = extractCompanyName (r),

peopleTitles = extractNameTitles (r.keyPeople)

for (p in peopleTitles)

where contains (compName, “Bank|Insurance|Investment”) or

(some (i in industryTerms) satisfies

contains (i, “bank|banking|insurance|finance|financial”))

return {person_name: p.name,

titles: p.titles,

company_name: compName,

age: null,

biography: null

}

Fig. 3. Extraction rule for key people.

2.2 Challenges in Data Extraction

In general, extraction rules can be fairly complex and the development time can
be extensive. On the one hand, they can be seen as a form of mapping rules that
require many UDFs. On the other hand, however, they differ from traditional
schema mappings in that the source schema, here, is very loose or non-existent.
This makes it harder to benefit from schema mapping tools [14], which assume
that the source schema and the target schema are both manageable and matched
within a user interface, which is then used to drive the generation of the mapping
rules. Generating a meaningful schema for DBpedia, even for a small portion of
it, would mean generating a large number of union or choice types to account for
the variation in the structure (even for the same type of entity). The ability to
load, use and manage such schema within a mapping tool is a research challenge
in itself.

A somewhat different research question is the following: Can we generate or
learn extraction rules directly from the data and/or from examples? The starting
points for such generation would be: the input source data (e.g., DBpedia),
an existing library of UDFs (for normalization, cleansing, etc.), and a set of
representative examples of the intended output data. Existing work on query
discovery based on data instances [18, 27] or on schema mapping design and
refinement based on examples [1, 21] may provide some foundations towards
solving this problem. However, most of the existing work on query or mapping
discovery has been restricted to the case of fixed, strictly relational, schemas;
it is not clear to what extent their methods or ideas generalize to a highly
heterogeneous environment.

The Lixto [20] system, aimed at extracting data from heterogeneous web
documents, takes a different approach where a visual tool can be used to specify
the various patterns that navigate a tree-like structure and select the relevant

IX

subsets of nodes. Although it uses example documents as a starting point, this
framework is closer in spirit to the paradigm of visual query builders. One down-
side of Lixto is that, in a highly heterogeneous environment (like DBpedia), a
user may end up having to specify a large number of navigation and selection
patterns to account for all the variations in the structure (or instance values) of
the objects to be extracted. Being able to further automate the process and to
reduce the amount of user interaction is left as an open question.

Coming back to data examples, a related and possibly simpler research ques-
tion than that of generating the extraction rules is the following: Given the
input source data, and a set of representative examples of the output data, is
there a procedure that directly extracts all output records that are similar to the
given examples? In other words, instead of generating rules to extract data, one
could employ a procedure that performs the extraction starting from the given
examples. In more concrete terms, a developer manually extracts records for,
say, “Bank of America”, “Goldman Sachs”, “American Express” and “Visa”,
and then asks the procedure to extract all other “similar” such records from the
input. Of course, defining what similar means is one of the challenges here.

3 Entity Resolution

To illustrate the problem of entity resolution, assume now that another extrac-
tion process uses SEC (rather than DBpedia) as a data source and extracts facts
about key executives of public companies. The relation SecPerson, shown below,
associates with each person a set of employment records that span, possibly,
multiple companies over many years.

SecPerson (name, cik, employment: (company, position, date), ...)

Note that the relation is nested in that the employment attribute is itself a
relation (i.e., a set of records with attributes for company, position and date). In
general, the support for a nested data model is a pre-requisite for any system or
language that aims at integrating richly structured entities from heterogeneous
data sources.

Specific to SEC data, each person is associated with a unique key (cik) that
is globally identifies a person across multiple SEC filings. In contrast, such key
does not always exist for DBpedia. Hence, before we can merge the information
about people extracted from the two data sources (SEC and DBpedia), we need
to be able to link or relate corresponding records in the two data sources that
refer to the same person. This problem is widely known as entity resolution. Let
us assume that we add a record id field (rid) to each KeyPeople record. Then,
in an abstract sense, the problem of entity resolution becomes one of creating
links of the form (rid, cik). Note that we use cik on the right side, since we know
that cik is a key that identifies a person entity in SecPerson. However, on the left
side, we use the entire record id, since we do not have a key of a person there.
Essentially, we need to link multiple records, in general, in KeyPeople to exactly
one person entity in SecPerson, by exploiting information such as name and also

X

Structured facts extracted from DBpedia

Structured facts extracted from SEC

Link
rid
cik

SecPerson(
name
cik
employment:

(company
position
date)

…
)

KeyPeople(
person_name
titles
company_name
…
rid

)

Result of entity resolution

Fig. 4. Entity resolution diagram.

other contextual information such as employment. Figure 4 depicts schematically
the concrete entity resolution scenario that we are considering.

3.1 Declarative Constraints for Entity Resolution

We now illustrate the logic that is needed to express the above entity resolution
problem. We advocate a declarative formalism where one specifies the properties
or constraints that the outcome of entity resolution (i.e., the link table) must
satisfy, without having to specify a concrete procedure or implementation for
computing this outcome. It will be the role of the underlying system to materi-
alize a good solution (i.e., a set of links) that satisfies the specified constraints
in the best possible way.

For our entity resolution example, we show in Figure 5 a set of declarative
constraints that can be used to specify the desired properties of the link table.
We believe that such constraints (and their extensions) should form the basic
ingredients of any language that attempts to specify entity resolution at a high-
level.6 We explain the constraints first and then discuss the issues involved in
building a language and system that implements such specification.

First, we have provenance or identification constraints that specify the at-
tributes or combinations of attributes that identify the source objects to be

6 However, the syntax of the actual language does not have to have follow the logical
notation we use here. Furthermore, some of these constraints may be implicit in the
semantics of the language.

XI

Link [rid] ⊆ KeyPeople [rid]

Link [cik] ⊆ SecPerson [cik]

Link : rid → cik

(m) every Link
satisfies

KeyPeople.person_name = SecPerson.name

or

(KeyPeople. person_name ∼∼∼∼name SecPerson.name
and

KeyPeople.company_name in SecPerson.employment [company]
)

Fig. 5. Declarative constraints for entity resolution.

linked. In this example, the two inclusion dependencies from Link to the sources
specify that the projection of Link on rid must be a subset of the projection of
KeyPeople on rid and, similarly, the projection of Link on cik must be a subset
of the projection of SecPerson on cik. Thus, the intention behind Link is to be
a subset of all the pairs of rid and cik values that appear in the two sources. In
general, it is up to the user to define what constitutes the identifier of an object
of interest for entity resolution. The framework we suggest is independent of
what makes the identifier of an object. As a result, we can naturally capture
most types of entity resolution described in the literature, from record linkage
and deduplication [17, 23] to reference reconciliation [12] and to more general,
semantic type of linkage among entities (e.g., the relationship between compa-
nies and subsidiaries). To follow some of the terminology in the literature, in our
example, the first type of object that participates in Link can be viewed as an
entity reference (since it refers indirectly to an actual person, via person name
and other non-identifying attributes), while the second type of object can be
viewed as an entity (since it identifies a person in SEC).

The next constraint in the specification is a functional dependency (on the
Link table) to specify that an rid from the first source must be linked to a unique
cik in the second source. Note that, in this example, it is is ok to have multiple
rid’s linked to the same person cik. Thus, by using a functional dependency, we
encode an N:1 type of entity resolution (where multiple objects of interest in
one source must be linked to a single object in another source). For 1:1 type of
entity resolution, we would write a functional dependency in the other direction
as well. For an N:M type of entity resolution, we do not need to specify any
functional dependencies.

The final constraint in this example, probably the most important, is used
to declare a disjunction of all the valid reasons for why two objects can match.
Essentially this constraint specifies that a link can exist only if at least one of
several matching conditions holds. The matching conditions are formulated with

XII

respect to the source tuples that are related via the link. In the example, we can
have a match because of exact equality of person names, or because of similarity
of person names (via a user-defined similarity predicate) and, moreover, because
the company name in the KeyPeople record appears in the employer set in the
SecPerson record. Note that the second matching condition relaxes the equality
on person names, when compared to the first matching rule, but at the same adds
a strenghtening condition that is based on employment information. Note that
the employment-based condition, although a strengthening, may apply to less
tuples (those that have a non-empty employment set in SecPerson). In practice,
one will have to formulate multiple matching conditions, in order to improve
the recall of entity resolution. Furthermore, each matching condition has to be
strong enough to prevent the generation of accidental links.

Other types of constraints that appear in practice are structural type of
constraints requiring properties such as transitivity of matching or variations of
it. Such constraints are needed to specify clustering behavior or to specify the
linking of two objects in two sources due to another object in a third source that
links to them.

A slight extension to this basic framework of constraints allows us to express
collective entity resolution [5], where the task is to create multiple, inter-related
types of links (rather than to create a single type of link). For example, assume
that we have the following two source relations:

Paper (pid, title, venue, year, ...)
Venue (venue, conferenceOrJournal, sponsor, ...)

In this context, we may want to specify links between papers and links be-
tween venues. Assume that the first type of link is represented as a binary relation
PaperLink(pid1, pid2), while the second type of link is represented as a binary
relation VenueLink(venue1, venue2). Then, the matching rules for one type of link
may depend on the other type of link. For example, we can declare the matching
conditions for VenueLink as follows:

every VenueLink satisfies
... (some similarity condition on venue names) ...

or
... (other condition) ...

or
exists (p1 in Paper, p2 in Paper)
p1.venue = VenueLink.venue1 and p2.venue = VenueLink.venue2 and
PaperLink (p1.pid, p2.pid)

In particular, the last condition says that a possible reason for a venue link
is that there exist two papers that are linked via PaperLink and whose venues
are the two venues related by the link.

Note that in the framework we suggest, we do not force the generation of
links, but rather define them implicitly through a declaration of the possible
matching rules. For example, satisfying the last matching condition in the above

XIII

constraint does not mean that a VenueLink tuple will necessarily be created,
since the existence of such tuple may be prevented due to other constraints. In
fact, creating such link may be the wrong choice sometimes (e.g., a conference
version and a journal version of a paper may be linked via PaperLink, but that
does not mean that the conference and the journal represent the same venue).
The disjunction allows us to enumerate, declaratively, all the possible reasons
for why a link may exist without forcing the link generation. It is then the job
of the underlying system to take into account all the constraints to reach a good
set of links, as we discuss in the next section.

Other frameworks aimed at declarative entity resolution exist. Perhaps, the
most comprehensive one is the Dedupalog [2] language which allows the use of
constraints, expressed in a Datalog style of syntax, to drive the identification of
duplicate entities. Several remarks are in order here. First, Dedupalog limits itself
to links that are equivalence relations, thus focusing strictly on deduplication.
In contrast, we require a more flexible framework for links that represent more
general semantic relationships, going beyond the “same-as” type of relationship.
Furthermore, Dedupalog rules are not entirely declarative. Generally speaking,
rules in Dedupalog are a guideline for the implementation, and the intention of a
rule is to populate links based on conditions on the sources or other links. Since
forcing links may create inconsistencies in the result, Dedupalog compensates
by allowing some rules to be soft: for such rules, links are “likely” to be gen-
erated. The system then figures out to what extent to satisfy these rules (e.g.,
by attempting to minimize the overall number of constraint violations). As a
consequence, an important downside is that the result of Dedupalog evaluation
does not satisfy, in a precise first-order logic sense, the Dedupalog rules that
were given as a specification. Furthermore, it may not be easy for a user of the
system to understand the properties of the final result.

In contrast, the matching constraints that we envision have a purely declar-
ative flavor, where we specify all the desired properties on the target links,
without worrying about how to actually generate the links. This achieves a bet-
ter separation between specification and execution. Furthermore, we require all
the declarative constraints to be satisfied, in a precise first-order logic sense, by
any solution that implements the specification. Ultimately, we believe that such
framework forms a better foundation for entity resolution that is transparent
and high-quality while at the same time high-level.

3.2 From Declarative Constraints to Execution: Challenges

There are many foundational and architectural challenges that need to be solved,
in order to achieve a functional framework for declarative entity resolution. The
main research questions here will be to define precisely the language that cap-
tures all of the above types of constraints, to formulate its semantics, and to
investigate the expressive power and computational aspects of the language. We
outline some of the issues here, and leave further details, solutions or algorithms
for future work.

XIV

One of the main problems for declarative entity resolution is the ability to ex-
ecute or compile the declarative constraints that specify the desired properties of
entity resolution into a more procedural plan that implements the specification.
But what do we want this implementation to actually compute? Ultimately, we
need one instance for Link that is a good solution, satisfying all the constraints.
But there may be many such good solutions. This is similar, in some aspects,
to data exchange semantics [15], where we can also have multiple solutions. For
our example in Figure 5, we could have an instance (Solution 1) with one link
satisfying the first disjunct in constraint (m), and another instance (Solution 2)
that is exactly identical but replaces that one link with a new link satisfying both
disjuncts in constraint (m). Intuitively, Solution 2 is a better solution, since it
contains a stronger link (a link for which there is a stronger matching evidence).

While in the previous example, Solution 1 is dominated by Solution 2 and
could be replaced by it, it is easy to come up with “good” instances for Link
that are incomparable. For example, there could be multiple candidate links,
satisfying the same disjuncts of constraint (m), each linking a KeyPeople record
to a different cik. Since all of these links cannot co-exist together due to the
functional dependency rid → cik, each of these links will be in a different good
solution. The presence of incomparable “good” solutions is a more challenging
situation than in data exchange, where universal solutions (i.e., the “good” so-
lutions in data exchange) are all equivalent, and furthermore there is always a
unique core universal solution. Thus, the entity resolution problem is inherently
more ambiguous than the data exchange problem.

One of the more challenging aspects is therefore to design an interactive
sytem for entity resolution that brings the human user in the loop in order
to resolve ambiguity. Conceptually, the interactive system must take the initial
specification (i.e., the constraints) and then enumerate through multiple good
solutions for Link. In particular, the differences between these solutions must
be pinpointed to the user, which can then decide how to further resolve these
differences (for example, by adding stronger matching clauses to (m)). An es-
sential part of the problem is being able to compactly represent and efficiently
navigate through the space of all different solutions. This problem of efficient,
interactive enumeration of a space of solutions, is similar in spirit to the problem
addressed in [9] in the context of schema integration. There, multiple solutions
for the schema integration problem are defined implicitly via a set of constraints
(of a simpler nature than here), and the question is how to interactively explore
and refine the space of solutions, in order to reach one final integrated schema.
While similar in spirit, the problem of navigating through solutions for entity
resolution is likely more challenging, especially due to the fact that the size of
the data, in general, is much larger than the size of schemas.

4 Mapping and Fusion

We illustrate next how mapping and fusion operations can be used to put all
the extracted facts together into rich entities, by also making use of the result of

XV

Link
rid
cik

SecPerson(
name
cik
employment:

(company
position
date)

…
)

KeyPeople(
person_name
titles
company_name
…
rid

)

Integrated
Entity Type

Person(
name
cik
employment:

(company
positions:

(title
start_date
end_date

)
…

)

Fig. 6. From extracted facts and links to integrated entities.

entity resolution. While there is extensive work on schema mapping tools [14],
data exchange semantics [15], and data fusion methods [6], there is not much
work towards developing an actual scripting language that allows developers
to combine all the necessary ingredients (mapping, fusion, aggregation, entity
resolution, schema definition), while still maintaining simplicity and ease of use.
An important aspect behind such desired language is the ability to express non-
trivial ways of fusion and aggregation of data that are often not possible in a
typical schema mapping tool, but are essential for developing industrial-strength
data integration flows.

4.1 An Example of Transformation

To illustrate the issues, consider the (simplified) scenario shown in Figure 6
where the goal is to take the extracted facts (i.e., KeyPeople and SecPerson) as
well as all the links generated so far, and create unified entities that conform
to a target Person type or schema. The desired target entity type contains,
in general, a union of many of the attributes from the sources. However, the
structure is generally richer than in the sources, with various nesting levels to
better aggregate and organize information. Furthermore, it is often the case
that a target attribute represents a non-trivial aggregation over a set of source
values. In this example, the employment history of Person has a two-level nesting
where, for each company, we want a listing of all known positions with the given
company, together with the start/end dates (as best as they can be inferred from
the sources.) Part of the task here is to construct the nested structure, where
we list the unique companies for which a person works, the unique positions the
person held, and also to compute the start/end dates from the input facts.

XVI

Person =
for (s in SecPerson)
return {name: s.name,

cik: s.cik,
employment: for (e in s.employment)

group by comp = normalizeCompanyName (e.company)
return { company: comp,

positions: for (g in Group) // Group is the group of all (company, position, date)
// records having the same normalized company value

group by pos = normalizeTitle (g.position)
return { title : pos,

start_date: minDate (Group),
// Group is now the group of all (company, position, date)
// records having the same normalized company and position

end_date: maxDate (Group)
}

}

}

Fig. 7. Transformation from SecPerson to Person.

Computing the start/end date for a position is an example of temporal ag-
gregation. These values that must be aggregated from all the input evidence
(i.e., input dates) for a person working for a given company in a given position.
Concretely, the fact that person X worked for a company C in some position P
may be appear in multiple extracted records (possibly from many documents,
each with a different date). This is especially true for SEC, which is a temporal
archive that keeps track of past history, and where information must be peri-
odically filed by the companies and their executives (even if nothing changed).
Thus, in order to infer the start date for position P , we must look globally across
all the sources and all the extracted records that mention person X as working
for company C in position P and return the earliest known date.

Figure 7 shows an example of transformation that achieves the intended
result for Person when considering the SecPerson in isolation (thus, ignoring
KeyPeople and Link). The transformation is written in an pseudo-query language
that abstracts features from query languages such as XQuery and Jaql [4]. The
transformation consists of multiple levels of for statements that construct the
structure of the target. To start with, the top-level part populates the name
and the cik fields in Person. The rest of the transformation then makes essential
use of the group by operation to put the target data into the desired form and
also to perform aggregation. First, the employment records under SecPerson are
grouped by the company name. Notably, the company name must be normalized
to account for name variations for the same company. As a result of normalization
and grouping, we obtain a set of unique company entries, each with an associated
group containing all the records that share the same normalized company name.
The group itself can then be further accessed by using the reserved word Group. A
second level of grouping, this time by normalized position, produces the listing of
unique positions. Finally, start date can now be computed by taking the minDate

XVII

function over the current group of records. A symmetric computation takes place
for maxDate.

4.2 Mapping and Fusion: Making it Easier

Even though it achieves the intended result, given SecPerson alone, the transfor-
mation in Figure 7 is neither declarative nor easy to write. The programmer has
to be quite familiar with the semantics of group by and has to understand the
implicit collections over which aggregation needs to be performed. Furthermore,
things become a lot more complex when additional data (e.g., KeyPeople from
DBpedia, or other extracted records from other types of filings in SEC) need also
to be fused into the Person entity. In such case, the above transformation has to
be either rewritten to account for the new sources (and links), or its result must
be integrated with the result of similar transformations from the other sources.
However, the integration itself is low-level and complex, since the target com-
ponents in Person, at various levels in the hierarchy, must be merged with the
new data, and the values for start/end dates must be re-aggregated to account
for the new data.

So, how do we make all this easier? The solution that has been tried in the
past is to use graphical schema mapping tools [14] to help generate or re-generate
the transformations. However, the process becomes clumsy when the transfor-
mations are complex and require a lot of aggregation and, ultimately, customiza-
tion that is beyond the realm of the tool. Hence, we still need a language-level
solution, but one that is more declarative and easier to use than writing raw
transformations such as the one above.

The alternative that we are investigating is a rule language that allows for
decorrelation of complex transformations via a mechanism that is similar to
Skolem functions. As an example, the earlier transformation in Figure 7 can be
rewritten as a simple rule where the value of employment is given by an explicit
function call Employment(s.cik) that replaces the entire query block in the box.
In other words, we would write:

Person = for (s in SecPerson)
return {

name: s.name,
cik: s.cik,
employment: Employment (s.cik)

}

Of course, explicit rules have to be written to define the value of the Employment
function. The advantage is that the rule to populate the top-level part of Person
does not need to know about how Employment is defined. The actual definition
of Employment as a function parameterized by cik is delegated to separate rules
that use possibly different data sources and that could rely themselves on other
similar Skolem functions. Hence, we achieve a separation of concerns that can
make the entire specification process more scalable and easier to evolve.

XVIII

Another advantage of the decorrelation approach is that the Skolem functions
themselves become first-class objects in the language, and can be used to express
important parts of the integration logic that otherwise would be implicit. For
example, the aggregation start date: minDate(Group) can be rewritten as:

start date: minDate (EmploymentProvenance (cik, comp, pos))

where EmploymentProvenance is now an explicit function that associates a triplet
(cik, company, position) to the set of all source records that mention the fact
that the person given by cik worked for company in the given position. As before,
separate rules have to be written out to explicitly define EmploymentProvenance.
But, again, the rule to aggregate and compute start date need not know about
how the provenance function is defined. Hence, we achieve the same separation
of concerns.

Fleshing out the concrete details for this language, such as the type system,
the allowed constructs, the efficient support for the functions that decorrelate the
rules, as well as the integration with declarative entity resolution and extraction
operations, falls outside the scope of this paper. Here, we outlined the issues
as well as some of the motivation for why there is, still, a need for a good
programmable language to address mapping and fusion in the context of the
larger data integration.

5 Further Related Work

We have already discussed some of the relevant and recent work in the areas of
entity resolution, schema mapping, data exchange and data fusion. We mention
now a few other related research papers and systems. Ajax [19] is an early data
cleaning framework. However, it was focused on matching and clustering and
less on mapping and fusion. In particular, Ajax had no high-level constructs to
support complex fusion and temporal aggregation, and had no notion of logical
entities. On the other end of the spectrum, iFuice [26] combines mapping with
fusion of data. However, iFuice includes no entity resolution (it assumes instead
that the links are given), and fusion is focused narrowly on individual atomic
attributes rather than applying on richer entity types.

More recently, the work on the interaction between matching dependencies
and data repairs [16] combines record matching and data repairing for better data
quality. As part of the high-level specification, matching dependencies (MDs)
are used to identify or equate components of tuples in different data sets, while
conditional functional dependencies (CFDs) are used to specify certain equalities
of values within a given relation. In order to achieve a clean data set, cleaning
rules implement the collection of MDs and CFDs by following certain pre-defined
strategies (e.g., by using master data) to actually force the correction of the data.
However, like in Dedupalog, matching dependencies only look at equivalence
(same-as) type of linkage. Moreover, the notion of an entity (or entity link) is only
implicit with matching dependencies. Furthermore, there is no notion of mapping
or transformation from one entity type to another. In contrast, we are interested

XIX

in a framework where entities have rich types and their properties (including the
links) are first-class citizens. Additionally, we emphasize the programmability
and customization aspect behind the cleansing, merging, transformation and
aggregation of complex entities from the input data and the links.

6 Concluding Remarks

In summary, we outlined a vision of a high-level framework that covers multiple
important steps in data integration. We exemplified rules and UDFs for extrac-
tion from semi-structured, heterogeneous data, which is complementary to text
extraction. We outlined the need for and the challenges involved in learning or
generating the extraction rules from examples. We illustrated the use of con-
straints as a foundation for declarative entity resolution, and outlined the chal-
lenges involved in defining the semantics and the compilation methodology for
the declarative constraints. We further illustrated the types of rules for mapping
and fusion that are needed to generate clean, unified entities.

It is important to emphasize that it is the combination of all these ingredi-
ents together (extraction, entity resolution, mapping, fusion) that gives enough
expressive power to tackle complex, end-to-end data integration tasks. It is of-
ten the case that different types of rules must be interleaved together as part
of the integration flow. Therefore, all the outlined components must be, ideally,
part of a single framework that can be easily used by domain experts to specify
and deploy sophisticated data integration flows for various scenarios. A further
important factor that permeates all aspects of such framework is the need for
tools that will assist users in various phases such as the data exploration or the
development and refinement of the actual rules for entity resolution, for fusion,
or for further analysis of the data.

References

1. Alexe, B., ten Cate, B., Kolaitis, P.G., Tan, W.C.: Designing and Refining Schema
Mappings via Data Examples. In: SIGMOD. pp. 133–144 (2011)

2. Arasu, A., Ré, C., Suciu, D.: Large-Scale Deduplication with Constraints Using
Dedupalog. In: ICDE. pp. 952–963 (2009)

3. Balakrishnan, S., Chu, V., Hernández, M.A., Ho, H., Krishnamurthy, R., Liu, S.,
Pieper, J., Pierce, J.S., Popa, L., Robson, C., Shi, L., Stanoi, I.R., Ting, E.L.,
Vaithyanathan, S., Yang, H.: Midas: Integrating Public Financial Data. In: SIG-
MOD. pp. 1187–1190 (2010)

4. Beyer, K., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M., Kanne, C.C.,
Ozcan, F., Shekita, E.: Jaql: A Scripting Language for Large Scale Semistructured
Data Analysis. In: VLDB (2011)

5. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. TKDD
1(1) (2007)

6. Bleiholder, J., Naumann, F.: Data Fusion. ACM Comput. Surv. 41(1) (2008)
7. Burdick, D., Hernández, M.A., Ho, H., Koutrika, G., Krishnamurthy, R., Popa, L.,

Stanoi, I.R., Vaithyanathan, S., Das, S.: Extracting, Linking and Integrating Data

XX

from Public Sources: A Financial Case Study. IEEE Data Eng. Bull. 34(3), 60–67
(2011)

8. Chiticariu, L., Krishnamurthy, R., Li, Y., Raghavan, S., Reiss, F., Vaithyanathan.,
S.: SystemT: An Algebraic Approach to Declarative Information Extraction. In:
ACL. pp. 128–137 (2010)

9. Chiticariu, L., Kolaitis, P.G., Popa, L.: Interactive Generation of Integrated
Schemas. In: SIGMOD Conference. pp. 833–846 (2008)

10. Dalvi, N.N., Kumar, R., Pang, B., Ramakrishnan, R., Tomkins, A., Bohannon, P.,
Keerthi, S., Merugu, S.: A Web of Concepts. In: PODS. pp. 1–12 (2009)

11. Doan, A., Naughton, J.F., Ramakrishnan, R., Baid, A., Chai, X., Chen, F., Chen,
T., Chu, E., DeRose, P., Gao, B.J., Gokhale, C., Huang, J., Shen, W., Vuong,
B.Q.: Information Extraction Challenges in Managing Unstructured Data. SIG-
MOD Record 37(4), 14–20 (2008)

12. Dong, X., Halevy, A.Y., Madhavan, J.: Reference Reconciliation in Complex In-
formation Spaces. In: SIGMOD Conference. pp. 85–96 (2005)

13. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate Record Detection: A
Survey. IEEE TKDE 19(1), 1–16 (2007)

14. Fagin, R., Haas, L.M., Hernández, M.A., Miller, R.J., Popa, L., Velegrakis, Y.:
Clio: Schema Mapping Creation and Data Exchange. In: Conceptual Modeling:
Foundations and Applications. pp. 198–236. Springer (2009)

15. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and
Query Answering. TCS 336(1), 89–124 (2005)

16. Fan, W., Li, J., Ma, S., Tang, N., Yu, W.: Interaction between Record Matching
and Data Repairing. In: SIGMOD Conference. pp. 469–480 (2011)

17. Fellegi, I.P., Sunter, A.B.: A Theory for Record Linkage. J. Am. Statistical Assoc.
64(328), 1183–1210 (1969)

18. Fletcher, G.H.L., Gyssens, M., Paredaens, J., Gucht, D.V.: On the Expressive
Power of the Relational Algebra on Finite Sets of Relation Pairs. IEEE TKDE
21(6), 939–942 (2009)

19. Galhardas, H., Florescu, D., Shasha, D., Simon, E., Saita, C.A.: Declarative Data
Cleaning: Language, Model, and Algorithms. In: VLDB. pp. 371–380 (2001)

20. Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The Lixto Data
Extraction Project - Back and Forth between Theory and Practice. In: PODS. pp.
1–12 (2004)

21. Gottlob, G., Senellart, P.: SchemaMapping Discovery from Data Instances. Journal
of the Association for Computing Machinery (JACM) 57(2) (2010)

22. Hernández, M.A., Koutrika, G., Krishnamurthy, R., Popa, L., Wisnesky, R.: HIL:
A High-Level Scripting Language for Entity Integration. In: EDBT. pp. 549–560
(2013)

23. Hernández, M.A., Stolfo, S.J.: The Merge/Purge Problem for Large Databases. In:
SIGMOD Conference. pp. 127–138 (1995)

24. Ohori, A.: A Polymorphic Record Calculus and Its Compilation. ACM Trans. Pro-
gram. Lang. Syst. 17(6), 844–895 (1995)

25. Ohori, A., Buneman, P.: Type Inference in a Database Programming Language.
In: LISP and Functional Programming. pp. 174–183 (1988)

26. Rahm, E., Thor, A., Aumueller, D., Do, H.H., Golovin, N., Kirsten, T.: iFuice
- Information Fusion utilizing Instance Correspondences and Peer Mappings. In:
WebDB. pp. 7–12 (2005)

27. Sarma, A.D., Parameswaran, A.G., Garcia-Molina, H., Widom, J.: Synthesizing
View Definitions from Data. In: ICDT. pp. 89–103 (2010)

28. Wand, M.: Complete Type Inference for Simple Objects. In: LICS. pp. 37–44 (1987)

