
Orchid: Integrating Schema Mapping and ETL
(Extended Version)

Stefan Dessloch∗, Mauricio A. Hernández†, Ryan Wisnesky‡, Ahmed Radwan§, Jindan Zhou§
∗Department of Computer Science, University of Kaiserslautern

Kaiserslautern, Germany
dessloch at informatik.uni-kl.de

†IBM Almaden Research Center
San Jose, CA, US

mauricio at almaden.ibm.com
‡School of Engineering and Applied Sciences, Harvard University

Cambridge, MA, US
ryan at eecs.harvard.edu

§Department of Electrical and Computer Engineering, University of Miami
Miami, FL, US

{a.radwan,j.zhou} at umiami.edu

Abstract— This paper describes Orchid, a system that
converts declarative mapping specifications into data flow
specifications (ETL jobs) and vice versa. Orchid provides
an abstract operator model that serves as a common model
for both transformation paradigms; both mappings and
ETL jobs are transformed into instances of this common
model. As an additional benefit, instances of this common
model can be optimized and deployed into multiple target
environments. Orchid is being deployed in FastTrack, a
data transformation toolkit in IBM Information Server.

I. INTRODUCTION

Over the last few years declarative schema map-
pings have gained popularity in information integra-
tion environments [1]. In schema mapping tools such
as IBM Rational Data Architect (RDA)1, or research
prototypes like Clio [2], users see a representation of
a source and a target schema side-by-side. Users specify
transformations by specifying how each target object
corresponds to one or more source objects, usually by
drawing lines across the two schemas. Users annotate
these lines with functions or predicate conditions that
enrich the transformation semantics of the mapping. For
example, column-to-column mapping lines are annotated
with transformation functions and table-to-table mapping
lines are annotated with filtering predicates. In many
cases, complex transformation functions written in a host
language are attached to lines enabling users to “escape”

1http://www.ibm.com/software/data/integration/rda/

to more procedural specifications while maintaining the
higher-level declarative specification of the mappings.

Mapping tools are used for two main reasons [3]: gen-
erating a transformation query or program that captures
the semantics of the mapping specification (e.g., a SQL
query that populates target tables from source tables),
and providing meta-data that captures relationships be-
tween source and target schema elements. The latter
functionality is useful when, for example, users need
to discover relationships between two related schemas
without regard to transformation semantics.

On the other hand, ETL (Extract - Transform - Load)
tools [4], which are commonly used in data warehousing
environments, allow users (often called ETL program-
mers) to express data transformations (often called jobs)
as a flow of data over a graph of operators (often called
stages). Each stage performs a piece of the transforma-
tion and passes the resulting data into the next stage. In
effect, users construct a directed graph of these stages
with the source schemas appearing on one side of the
graph and the target schemas appearing on the other side
of the graph. Stages in ETL jobs range from simple data
mappings from one table to another (with renaming of
fields and type conversion), to joining of data from two
or more data paths, to complex splitting of data into
multiple output paths that depend on input conditions
and merging of those data paths into existing data.

ETL jobs and mappings are widely used in infor-
mation integration tools to specify data transformations.
IBM alone supports a number of mapping tools across



several products (e.g., Rational Data Architect (RDA),
Rational Application Development2, and WebSphere In-
tegration Developer3). IBM also supports at least two
ETL tools: IBM WebSphere DataStage, and another in
DB2 Warehouse Enterprise Edition.

In this paper we describe Orchid, a system origi-
nally designed to convert declarative Clio schema map-
pings [1] into IBM WebSphere DataStage ETL jobs and
vice versa. Orchid provides an abstract operator model
that serves as a common model for both transformation
paradigms; both mappings and ETL jobs are transformed
into instances of this common model. As an additional
benefit, instances of this common model can be opti-
mized and deployed into multiple target environments.
For example, instead of converting an ETL job into a
mapping, Orchid can rewrite the job and deploy it back
as a sequence of combined SQL queries and ETL jobs.
This rewrite and deployment of ETL jobs occurs auto-
matically and reduces the workload of (highly expensive)
ETL programmers.

Mapping and ETL tools are aimed at different sets
of users. In general, mapping tools are aimed at data
modelers and analysts that want to express, at a high-
level, the main components of a data transformation
or integration job. In this kind of scenario, declarative
specifications and simple GUIs based on lines work
well. ETL tools are aimed at developers interested in the
efficient implementation of the data exchange/integration
task. Since designers and developers work as a team
when implementing a task, collaboration is facilitated
if the tools used can interoperate. However, mapping
and ETL tools do not directly interoperate, and users
often require manual processes to support the following
features:

• Starting from declarative mappings, generate ETL
jobs reflecting the mapping semantics, which can
then be further refined by an ETL programmer.

• Starting from an ETL job, extract a declarative map-
ping that represents the logical aspects of the ETL
operations as a source-to-target schema mapping.

• Support “round-tripping” for the different data
transformation representations, allowing incremen-
tal changes in one representation to propagate into
the other.

To illustrate the use of the above features, let us take
a look at how Orchid’s capabilities are utilized in an
industrial product. Orchid’s technology is now part of

2http://www.ibm.com/software/awdtools/developer/application/
3http://www.ibm.com/software/integration/wid/

FastTrack, a component of IBM Information Server4.
IBM Information Server is a new software platform
providing a host of tools for enterprise information inte-
gration, including IBM WebSphere DataStage. FastTrack
uses IBM Information Server’s metadata repository to
facilitate collaboration between designers of a data inte-
gration or data exchange application. For instance, tools
are provided for system analysts to enter relationships
between data sources in a declarative way (e.g., as cor-
respondences between two schema elements, as business
rules, etc.). These declarative specifications are captured
and stored as schema mappings. The mappings are often
incomplete, only partially capturing the transformation
semantics of the application. In fact, some of the rules
can be entered in a natural language such as English.

FastTrack converts these mappings into IBM Web-
Sphere DataStage (ETL) job skeletons that contain some
unresolved place-holder stages that are not completely
specified. For example, an analyst might not know how
to join two or more input tables, but FastTrack, neverthe-
less, detects that the mapping requires a join and creates
an empty join operation (no join predicate is created) in
the ETL job. Similarly, business rules entered in English
are passed as annotations to the appropriate ETL stage.
These annotations guide ETL programmers writing the
actual transformation functions.

Once the programmers are done refining the generated
ETL job, they communicate the refinements back to the
analysts for review. The programmers can regenerate the
mappings based on the refined ETL jobs; unless the
users radically modify the ETL jobs, the regenerated
mappings will match the original mappings but will
contain the extra implementation details just entered by
the programmers. In our example, the analyst will now
see the join condition used for those input tables. In an
alternative scenario, users can convert existing ETL jobs
into a flow of mappings and send them to analysts for
review.

Converting between mappings and ETL systems raises
a number of challenges. The first is the different levels
of abstraction between mappings and ETL jobs. Because
mappings are declarative specifications, they do not
capture (by design) the exact method by which their
transformation semantics are to be implemented. For
example, a mapping from two relational tables into
a target table is often specified with a join operation
between the two tables. As with SQL and other declar-
ative languages, mappings do not capture how this join

4http://www.ibm.com/software/data/integration/info server/



operation is implemented and executed. In general, ETL
systems have more operations and richer semantics than
mapping tools. ETL systems usually provide several
operators that implement the join operation, each with
a different implementation (e.g., depending on the se-
lected operator, the runtime engine executes the join
using nested-loops, sort-join, or hash-join). That is, ETL
programmers can and often choose the specific imple-
mentation for the required transformation. This leads
into the second challenge: ETL systems often provide
operators whose transformation semantics overlap (i.e.,
some data transformation tasks can be implemented
using different combinations of ETL operators). To
convert ETL jobs into mappings, it is necessary to
first compile them into an intermediate representation
that better exposes elementary data transformations. As
such, we require a common model that captures the
primitive transformation operations of mapping systems
and the main transformation operations of ETL systems.
Finally, ETL systems support operators with semantics
orthogonal to mapping systems, such as data cleansing
and update propagation. These operators therefore do not
have counterparts in mapping systems, and while such
operators cannot be converted into equivalent mapping
specifications, their presence must not interfere with our
transformation and their presence must be preserved
during transformation.

The rest of this paper is organized as follows. In the
next section we give a brief survey of related work. We
then provide an overview of Orchid and the internal com-
mon model used to capture the transformation semantics
of ETL jobs and mapping specifications. In Section IV
we describe this model in more detail and explore the
generality and limitations of our approach. Sections V
and VI discuss example transformations of ETL jobs
to and from mappings. We conclude by describing our
current status and future work.

II. RELATED WORK

ETL systems are traditionally viewed as tools that
load, cleanse, and maintain data warehouses. However,
ETL systems have evolved to allow a variety of source
and target data formats and are used in many data
transformation and integration tasks.

Although ETL has received much attention in the
commercial data integration arena, this attention has
not been matched by the database research community.
The most extensive study of common models for ETL
and ETL job optimization is by Simitis, et. al. [5][6].
Their work proposes a multi-level workflow model that

Fig. 1. Orchid Components and Representation Layers

can be used to express ETL jobs. ETL jobs expressed
in their model can be analyzed and optimized using
well-understood logical inference rules. Orchid uses a
simplified version of this common model tailored to deal
with mappings. Furthermore, the Simitis, et. al. work is
not tied to any particular ETL system and the authors
do not discuss how the set of ETL operators from a
particular vendor can be converted into instances of their
model and vice-versa. Orchid compiles real ETL jobs
into a common model and can deploy that abstract model
instance into a valid job in an ETL system or other target
platform.

In Section III we describe how to transform ETL
jobs and mappings into a common model that cap-
tures the transformation semantics. This transformation
is somewhat similar to compiling declarative queries into
query graphs. Techniques for optimizing query graphs by
means of rewrite rules are well known [7].

Unlike ETL, schema mapping has received consider-
able attention by the research community [2][8]. Map-
pings are constraints between source and target data
instances expressed in a logical notation. These rela-
tively simple logical expressions can be generated semi-
automatically from the schemas involved in a mapping
and the simple correspondences that a user draws across
them [2]. Furthermore, because the semantics of map-
pings are known, they can be converted into queries (or
data transformation programs) expressed in several query
languages. For instance, Clio can produce XQuery and
XSLT scripts from the same mapping specification.

III. OVERVIEW

Orchid is built around a multi-layered representation
model, where both ETL job and schema mapping de-
scriptions are represented at an external, an intermediate,



and an abstract layer. The representation layers are
illustrated in Figure 1.

The External layer characterizes the description of
ETL and mapping information in an external format
specific to a data processing product or system. For
example, IBM WebSphere DataStage uses proprietary
file formats to represent and exchange ETL jobs. The
representation model used by Orchid at this layer directly
reflects the artifacts of the exchange format and makes
the information available for further processing. In the
same way, mapping related information is stored in a
product-specific manner by systems such as Clio or
RDA, and similar import/export capabilities are imple-
mented in Orchid to exchange mapping information with
such systems.

At the Intermediate layer, ETL jobs are still repre-
sented in a product-specific manner, but are now captured
in models that reflect the ETL processing aspects relevant
to Orchid. For example, a DataStage ETL job can be
seen as a graph that consists of a number of connected
stages (e.g., Transform, Filter, Lookup, Funnel, etc.)
with specific operational semantics for processing data.
This information is captured by using DataStage specific
stages at the Intermediate layer. A separate Intermediate
model must be implemented for each data processing
platform supported by Orchid, although this is often
trivial (see Section V). For mapping information, the
Intermediate layer makes use of Clio mappings, which
are described in Sections V and VI.

The Abstract layer supports our Operator Hub Model
(OHM) to represent the operational semantics of ETL
processing steps in a product-independent manner. OHM
can be characterized as an extension of relational algebra
with extra operators and meta-data annotations that char-
acterize the data being processed. OHM is discussed in
Section IV. Introducing OHM at the Abstract layer has
several advantages:

First, Orchid represents and manipulates the semantics
of ETL jobs in a platform-independent manner. This
facilitates transformations to and from declarative map-
pings and makes the model product-independent.

Second, Orchid is extensible with respect to data
processing platforms and mapping tools. New ETL
import/export and compilation/deployment components,
and new mapping functionality, can be added to the
system without impacting any of the functionality of the
OHM layer. Likewise, additional operators can be added
at this layer without impacting existing ETL or mapping
components.

Third, by being close to relational algebra, OHM lends

itself to the same optimization techniques as relational
DBMS. That is, we can leverage the vast amount of
knowledge and techniques from the area of relational
query rewriting and optimization and adapt these to the
data processing model found at this level. For exam-
ple, the deployment step (generating a data processing
definition for one or more target platforms, such as
DataStage jobs or IBM DB2 SQL queries) can be better
implemented based on OHM (vs. logical mappings),
because OHM is already close to the data processing
semantics of many target deployment platforms. This is
especially useful if a combination of target platforms
is considered. For instance, a DataStage job can be
imported, optimized and redeployed to a combination
of DataStage and DB2, thereby increasing performance.
In a similar way, optimization capabilities available at
the OHM level can be used to optimize an existing ETL
job on a given platform by importing it into Orchid,
performing optimizations at the OHM level, and then
deploying back to the original platform. This makes
query optimization applicable to ETL systems, which
usually do not support such techniques natively.

In the next section, we describe OHM, our Abstract
Layer model. In Section V, we use an example to
illustrate how Orchid converts an ETL job into an OHM
instance and how Orchid converts that OHM instance
into a mapping. Section VI then uses the same example
to show the process in the reverse direction: starting from
a mapping, create an OHM instance and then deploy that
OHM instance as an ETL job.

IV. THE OPERATOR HUB MODEL

The main goal for introducing our Operator Hub
Model (OHM) in the Orchid architecture is to provide
a model for representing data transformation operations
independently of specific ETL platforms. Such platforms
frequently support a repertoire of operators that take sets
of rows as input data and produce one or more sets of
rows as output. We wanted OHM to stay as close as
possible to the operator-based approach found in ETL
platforms, because this would allow us to reflect the
common processing capabilities and reduce our efforts
to translate between OHM and (multiple) ETL systems.
On the other hand, OHM must also be capable of repre-
senting the transformations inherent in schema mapping
specifications, which are dominated by declarative con-
structs that can be interpreted in a query-like manner.
To achieve both goals, we chose relational algebra as
the starting point for our operator model. Relational
algebra operators and semantics are well-known within



the database community [9] and capture the common
intersection of mappings and ETL transformation ca-
pabilities. ETL is heavily rooted in a record-oriented
data world, and (extended) relational algebra is com-
monly accepted as a foundation for record-oriented data
transformations by the relational database community,
where it serves as the foundation of query processing.
Moreover, numerous extensions support nested structures
(e.g., NF2 nest/unnest) [10], which we can leverage in
OHM. Furthermore, we can take advantage of the vast
array of processing and optimization techniques based
on relational algebra developed over the last decades.

Formally, an OHM instance is a directed graph of
abstract operator nodes. The graph represents a dataflow
with data flowing in the direction of the edges. Each node
in the graph represents a data transformation operation
and is annotated with the information needed to capture
the transformation semantics of the ETL operation it
represents. Each edge in the graph is annotated with
the schema of the data flowing along it. OHM operator
names are written in UPPERCASE to distinguish them
from similarly named stages at the Intermediate level.
Figure 5 depicts an example OHM graph.

Orchid uses a special nested-relational schema repre-
sentation to capture the schemas of data. This represen-
tation is rich enough to capture both relational and XML
schemas. However, the initial implementation of Orchid
deals only with flat transformations and thus does not use
the nesting capabilities of our schema representation.

OHM operators are defined by identifying input and
output data parameters and operational properties that
represent the details of the operator behavior. Some
OHM operators have properties whose values are expres-
sions, such as boolean expressions for defining logical
conditions, or scalar expressions for describing how the
values of new columns are derived from existing ones.
For example, a PROJECT operation has a single input, a
single output, and a set of column derivation expressions
that define how each output column is constructed from
the columns of the input data.

OHM uses a generalized notion of projection that
includes the generation of new output columns based
on potentially complex expressions, similar to the ex-
pressions supported in the select-list of a SQL select
statement. OHM borrows from SQL in that regard,
using a subset of the respective SQL syntax clauses to
represent expressions of any kind. However, the set of
functions available in such expressions is extensible in
order to capture any functional capabilities not directly
supported by built-in SQL functions.

Fig. 2. Current OHM Operators

The set of operators currently defined in OHM in-
cludes well-known generalizations of the traditional re-
lational algebra operators [9] such as selection (FILTER),
PROJECT, JOIN, UNION, and GROUP (for performing
aggregation and duplicate elimination), but also supports
nested data structures through the NEST and UNNEST
operators, similar to operators defined in the NF2 data
model [10]. A detailed discussion and formal definitions
of such operators is beyond the scope of this paper and
can be found in the literature referenced above. Because
the same data in a complex data flow may need to
be processed by multiple subsequent operators, OHM
includes a SPLIT operator, whose only task is to copy
the input data to one or more outputs. The operators
currently supported in Orchid are depicted in Figure 2.

OHM supports refined variants of the basic operators
through a notion of operator subtyping. An operator
subtype may introduce additional semantics by defining
how new properties are reflected into inherited properties
and by providing a set of constraints for property values.
For example, the following operators are refinements of
PROJECT:

• BASIC PROJECT permits only renaming and drop-
ping columns, and does not support complex trans-
formations or data type changes.

• KEYGEN introduces and populates a new surrogate
key column in the output dataset.

• COLUMN SPLIT and COLUMN MERGE are a pair of
operators that split the content of a single column
into multiple output columns, or vice versa.

Note that a refined operator must be a specialization
of its more generic base operator. That is, its behavior
must be realizable by the base operator. Consequently,
rewrite rules that apply to a base operator also apply
to any refined variant. However, a refined operator may
be easier to use when modeling an ETL job and may
be closer to the operational behavior found in a number
of ETL-specific scenarios and products. Refined variants



are also useful for deploying an OHM graph to a specific
product platform (see Section VI-B for more details).
Handling unknown stages. As we mentioned in Sec-
tion I, not all ETL operations can be translated as
mappings. Some complex ETL operations, like data
cleansing, data compression, data encoding, pivoting of
columns into rows, and operations that merge data into
existing tables are generally not supported by mapping
systems. Our initial implementation of OHM mainly cov-
ers operations that can be expressed by mapping systems
and, thus, cannot capture these complex ETL operations.
Furthermore, ETL systems allow users to plug-in their
own “custom” stages or operators which are frequently
written in a separate host language and executed as an
external procedure call when the ETL flow is executed.
We currently treat complex or custom ETL operators as
black-boxes in our OHM graph; we may not know the
transformation semantics of the operator but we at least
know what are the input and output types. We introduce
a catch-all OHM operator, named UNKNOWN, for these
cases. UNKNOWN operators will appear when translating
from ETL into mappings. We discuss how to handle this
special operator in Section V.

Relational schema mapping systems allow users to
specify operations whose semantics can be expressed as
relational algebra operators (or simple extensions of RA).
In Section VI we discuss how to use the graph of OHM
operators in Figure 11 to capture mapping transformation
semantics. Here we note that most (relational) schema
mapping systems allow users to enter column-to-column
transformations, filtering and join predicates, grouping
conditions, aggregate functions, unions, and, in certain
cases, conditions over the resulting target instance and
logic that splits the computation into more that one target
table or column. Detailed examples of mappings and
their transformation semantics can be found in [11].
Because OHM is designed to capture the transformation
semantics of mappings, UNKNOWN will not appear in
OHM instances generated from mappings.

V. TRANSFORMING ETL INTO MAPPINGS

In this section we discuss how to convert ETL jobs
into mappings via the OHM. We first describe how
ETL jobs are compiled into an instance of the OHM
and then describe how OHM instances are converted
into mapping specifications. Section VI discusses the
opposite direction, from a mapping to an ETL job.

Figure 3 shows the example we will use in our discus-
sions. This simple IBM WebSphere DataStage job takes
as input two relational tables, Customers and Accounts

and separates the Customers information into two output
tables, BigCustomers and OtherCustomers, depending on
the total balance of each person’s accounts. Figure 4
shows the schemas involved. Similar jobs (albeit with
more operations and inputs) are routinely executed to, for
example, tailor credit card or loan offers to customers.

Fig. 4. Source and Target schemas

The example ETL job starts by applying transfor-
mations to some of the columns in Customers. This
occurs in the Transformer stage labeled Prepare Cus-
tomers in Figure 3. Figure 8 shows the transformation
functions within the resulting mappings. The Filter stage
labeled NonLoans applies the filter “Accounts.type 6= ‘L”’
to incoming Accounts tuples. That is, only tuples for
non-loan accounts pass the filter. Then, the processed
Customers tuples are joined with the non-loan Accounts
tuples in the Join stage, which uses the join predicate
“Customers.customerID = Accounts.customerID”. The Com-
pute Total Balance stage groups all incoming tuples
by customerID and applies a sum aggregate function to
balance. The final filter stage, labeled >$100,000, first
applies a predicate that checks if the computed total
balance is greater than $100,000; if it is, the tuple is
routed into the BigCustomers output table. Otherwise, the
tuple is routed into the OtherCustomers table.

A. Compiling ETL jobs into OHM

Converting ETL jobs into OHM instances involves
compiling each vendor-specific ETL stage into one or
more OHM operators. The result of this compilation
is a sequence of OHM subgraphs which are connected
together to form the OHM representation of the job.

Orchid compiles ETL jobs in two steps. In the first
step, the vendor-specific ETL representation is read by
our Intermediate layer interface and is converted into a
simple directed graph whose nodes wrap each vendor-
specific stage. The Intermediate layer is most useful
when an ETL system does not have a programmable API



Fig. 3. Example ETL job

Fig. 5. OHM instance

that allows direct access to its internal representation.
For example, this was the case with DataStage 7.5x2 and
earlier. The only way to access these DataStage jobs is by
serializing them into an XML format and then compiling
that serialization into an Intermediate layer graph. In
other words, the Intermediate layer graph often serves
as a stand-in object model when no model is provided
by an ETL system. Newer versions of DataStage (such
as the version in IBM Information Server) do provide an
object model and hence Orchid simply wraps each stage
with a node in the Intermediate layer graph.

The second step is to compile the vendor-specific
operation wrapped by each node of the Intermediate
layer graph into a graph of one or more OHM operators.
Orchid traverses the Intermediate layer graph and, for
each node, invokes a specific compiler for the stage
wrapped by the node. For example, the Intermediate
layer graph for our example in Figure 3 is structurally
isomorphic to the ETL job graph. When Orchid visits the
node representing a Filter stage, it looks for a vendor-
specific compiler for this stage. This compiler then
creates the necessary OHM operator graph to capture
the stage semantics. (In this case, a FILTER followed by a
BASIC PROJECT). The compiler also computes the output
schema of the data at each output edge of the operator.
Compilation proceeds by connecting together the OHM
subgraphs created by compiling each stage visited during
the traversal of the Intermediate layer graph.

Figure 5 shows the OHM instance that is produced
by Orchid for our example job. The NonLoans Filter

stage is compiled into a FILTER operation followed
by a BASIC PROJECT operation. Similarly, the Join
stage is compiled into a JOIN operator followed by a
BASIC PROJECT. Here, the JOIN operator only captures
the semantics of the traditional relational algebra join,
while the BASIC PROJECT removes any source column
that is not needed anymore (for instance, only one
customerID column is needed from this point on in the
OHM graph).

Of particular interest is the result of compiling the final
Filter stage. Unlike an OHM FILTER operator, a Filter
stage can produce multiple output datasets, with separate
predicates for each output. An input row may therefore
potentially be copied to zero, one, or multiple outputs.
Alternatively, the Filter stage can operate in a so-called
“row-only-once” mode, which causes the evaluation of
the output predicates in the order that the corresponding
output datasets are specified, and does not reconsider
a row for further processing once the row meets one
of the conditions. In addition to the essential filtering
capabilities, the Filter stage supports simple projection
for each output dataset.

Figure 6 describes the processing behavior of the Filter
stage using a corresponding OHM representation. The
properties of the Filter stage hold descriptions of filter
predicates (i.e., filtering conditions), one for each output
dataset, and column derivation expressions describing the
simple projections that can occur for each output dataset.
An equivalent OHM graph contains a SPLIT operator and
a FILTER - BASIC PROJECT operator sequence for each



Fig. 6. Filter Stage Representation in OHM

output dataset, with operator properties corresponding to
the predicates and derivations defined for the original
Filter stage. If the Filter stage is in row-only-once
mode, the predicates for each output dataset need to
be combined with the (negated) predicates of previous
output stages. Note that the SPLIT and BASIC PROJECT
operators are optional and do not necessarily need to be
generated. SPLIT is not needed if the Filter stage only has
a single output dataset. BASIC PROJECT is not needed if
no output column is projected from an output dataset.
(In order to simplify the logic of the stage compilers, we
allow the compilers to generate redundant (i.e., empty)
operators which will later be eliminated by a generic
rewrite step before pursuing further operations on the
graph.)

In our example, the compiler detects that the input
tuples of the final Filter stage will be split between
two or more output links and adds a SPLIT operator
to the OHM graph. Then a FILTER operation is placed
on each outgoing path. The FILTER on the path to
BigCustomers contains the original Filter stage predicate,
namely, “totalBalance > 100000”. The FILTER on the
path to OtherCustomers receives the opposite predicate,
“not(totalBalance > 100000)”, because the semantics of
the stage requires all tuples not satisfying the stage
predicate to flow into OtherCustomers.

Table I shows the OHM subgraphs of other processing
IBM WebSphere DataStage stages supported by Orchid.
The diagrams in the table omit the details shown for the
Filter stage in Figure 6, but depict the possible flow of
OHM operators constructed for each stage. The boxes at
both ends of each diagram represent the input and output
schemas of the stage. Notice that the flow diagrams
resemble syntax description diagrams used to describe

TABLE I
OHM FRAGMENTS

DS Stage OHM fragment

Aggregator,
Remove Dups.

Copy

Filter
Switch

Funnel

Join
Merge

Lookup

Modify

Transform

Surrogate Key

many programming languages. We used a lighter line
around optional OHM operators and paths.

To recap, to enable Orchid to compile a vendor-
specific ETL job into an OHM instance, a programmer
must provide an importer that converts ETL stages into
nodes in the Intermediate graph. Then, the programmer
writes compilers that transform each supported stage into
an OHM graph. Orchid uses a plug-in architecture and
each compiler is a dynamically detected plug-in that
follows an established interface. In our initial imple-
mentation, we support 15 DataStage processing stages.
Understanding the semantics of the stages and writing
the 15 compilers was a 4 person-month effort. Note that
because there is often an overlap in the semantics of the
stages, compilers can be designed to form a hierarchy
of compiler classes; more specific stages use compilers
that are subclasses of compilers for more general stages.



B. Deploying OHM as mappings

This section discusses how to convert an OHM in-
stance into one or more mappings. Each operator node
in the OHM instance is converted into a simple mapping
expression that relates the schema(s) in its input edge(s)
to the schema(s) in its output edge(s). Orchid then
composes neighboring mappings into larger mappings
until no further composition is possible.

We leverage Clio’s mapping language and technology
[2] to represent and manipulate mappings in Orchid. Clio
expresses mappings using declarative logical expressions
that capture constraints about the source and target
data instances. Clio mappings are formulas of the form
∀φ(X)→ ∃Y ψ(X,Y ). These mapping expressions can
be easily translated into many other mapping specifica-
tions. An important property of this class of mapping
expression is that we understand how and when we can
compose two mapping formulas [12][13]. In other words,
given two mappings A → B and B → C, Clio (and
hence Orchid) can compute A → C (if possible) in
a way that preserves the semantics of the two original
mappings.

More formally, given a directed acyclic graph (DAG)
of OHM operators, Orchid creates a similar DAG of
mappings. Orchid then performs an ordered traversal of
the nodes in the mapping DAG, starting with the source-
side nodes. As nodes are visited in the direction of the
edges, Orchid attempts to compose the mapping in the
current node with all the mappings targeting any of the
node’s incoming edges. If this composition is possible,
the composed mapping replaces all participating map-
pings in the mapping DAG. A visited node in the graph
which does not admit composition in this way has at
least one edge that serves as a materialization point.
Materialization points identify boundaries between OHM
graph sections inside of which mappings are completely
composed. The result is a set of mappings that touch only
at the materialization points (i.e., the target side of one
mapping is part of the source side of the next mapping).
Algorithm 1 describes this procedure.

Materialization points occur for two reasons. First,
some OHM operators always have edges that serve
as materialization points, e.g. SPLIT. (Although it is
theoretically possible to compose mappings over a SPLIT
operator, a SPLIT represents a fork in the job that was
placed there by an ETL programmer and as such is a
natural place to break between generated mappings.). As
we mention at the end of Section IV, some complex
or custom ETL stages will appear as UNKNOWN oper-

Input: O = (V,E): An OHM flow directed graph
Output: A set of mappings
G = (V,E)←− acopyofO;
/* Compute a mapping for each operator

in G. */
for v ∈ V do

Compute map (v);
end
/* Remove the edges at materialization

points. See Section V. */
for e ∈ E do

if e is a materialization point then
Remove e from G;

end
end
/* OPEN is a queue of operators

initialized with the ‘‘root’’ nodes
in G. */

OPEN ←− {v | v ∈ V, 6 ∃v′ ∈ V s.t.(v′ → v) ∈ E}
MAPPINGS ←− an empty set;
/* Visit the OHM operators in

topological order and compose the
mappings. */

while OPEN not empty do
v ←− dequeue (OPEN);
N ←− {v′ | (v′ → v) ∈ E};
m←− Compose (N , map (v));
map (v)←− m;
/* Push into OPEN all descendents

of v */
d←− {v′ | (v → v′) ∈ E};
OPEN ←− OPEN ∪d;
if d is empty then

/* Add map (v) to the results. */
MAPPINGS ←− MAPPINGS ∪ map (v);

end
end
return MAPPINGS;

Algorithm 1: OHM to Mappings

ators OHM instances. The end-points of a continuous
sequence of UNKNOWN operators are also marked as ma-
terialization points. Second, by composing neighboring
mappings, we are in effect performing view unfolding
[14] (i.e., you can think of each operator as a relational
view that uses as input one or more views. By com-
posing these views we are, essentially, unfolding the
views). There are semantic restrictions that limit how
many of these views we can unfold: for instance, we
cannot compose two mappings that involve grouping and
aggregation [7]. In general, any operation that eliminates
duplicates cannot be composed with an operation that
uses the cleansed list for further processing [15]. For



example, if we compute an aggregate function like sum
after we remove duplicates, we cannot compose those
two operations and have sum operate over the sources
that contain duplicates.

Fig. 7. Extracted mappings

In the case of our example OHM instance, the above
process identifies one materialization point: the edge
after the GROUP operator and before the SPLIT operator.
By chance, this is a materialization point for both of the
above reasons. The result is three mappings that touch at
the materialization point edge. The composed mapping
boundaries are shown in Figure 75.

Figure 8 shows the three computed mappings ex-
pressed using a query-like notation, with variables bound
to set-type elements (e.g., Customers). Notice that M1

computes a target relation named “TotBal” and that this
is the source relation for mappings M2 and M3. This
intermediate relation is defined by the schema of the
data flowing by the materialization point edge in the
OHM instance (the edge after the GROUP operator). The
long expressions on the body of M1 are the transforma-
tion functions used to compute the values of ageGroup,
endDate, and years.

Finally, consider what happens when there is an
UNKNOWN operator in the OHM instance. For example,
suppose there is a custom operator just after the Join
stage in our example (see Figure 9). This custom oper-
ator appears as an UNKNOWN operator directly between
the BASIC PROJECT and the GROUP operators in Fig-
ure 2. If we assume the input relation to this UNKNOWN
operator is “CustAccts” (see Figure 10) and the output
relation is now called “customOut”, then both these

5To simplify the diagram, we draw M2 and M3 starting at the
output edges of the SPLIT operator. We can do this because,
internally, all output schemas of SPLIT are equivalent to its the input
schema. SPLIT ties the input edge to the two output edges but does
no transformation.

Fig. 8. Generated Mappings

edges will be marked as materialization points. Orchid
computes the following five mappings: M1 now maps
from the source tables into “CustAccts” and does not
contain the grouping condition. Then, a new and “empty”
mapping M4, maps “CustAccts” to “customOut”, and
stands in place of the custom operator. This “empty”
mapping only records the source and target relations and
a reference (e.g., the name) of the custom operator that
created this mapping. M4 does not contain any column-
to-column mapping, or any filtering predicates. Another
new mapping M5 now maps “customOut” into ”TotBal”
and captures the grouping condition that was in M1. M2

and M3 are the same as before, connecting “TotBal” to
the target tables.

VI. TRANSFORMING MAPPINGS INTO ETL

We now describe how mapping specifications are
transformed into ETL jobs. We first describe how to
compile mapping specifications into an OHM instance
and then describe how OHM instances are deployed as
ETL jobs.



Fig. 9. Example with Custom Stage

Fig. 10. OHM with UNKNOWN Operator

A. Compiling Mappings into OHM

We begin by assuming that the user starts from the
mappings in Figure 8. These mappings can be entered
using a mapping tool like Clio. Although users might
want to enter two mappings, one that goes from the
sources into BigCustomers and another that goes into
OtherCustomers, this is not currently possible in Clio (and
many other mappings tools). The reason is that the last
filter predicate ranges over the result of the sum of all
balances. Instead, users of Clio must create the three
mappings in Figure 8: M1 computes the total balance
for each Customers and M2 and M3 then route the tuples
into BigCustomers or OtherCustomers.

To enter a mapping like M1, a user loads Customers
and Accounts as a source and defines an intermedi-
ate table, called TotBal and whose schema is similar
to BigCustomers, as a target (see Figure 4). The user
draws lines connecting the relevant columns and adds
any transformation functions needed on the lines. This
includes the conditional expressions that determine the
target values for ageGroup, endDate, and country. Then,
the user adds any table-level predicate needed for the
transformation. In the case of M1, this includes the
filter condition on Accounts, the join condition, and the
grouping condition. The details of how Clio compiles
these lines into mappings are detailed in [2].

Given a set of mappings, Orchid first creates an OHM
graph that captures the data dependency between the
mappings. In our example, the output of M1 flows into
both M2 and M3, and thus Orchid creates a SPLIT

operator that connects the generated OHM graphs for
each mapping. If two or more mappings share a common
target relation (which is not the case in our example)
Orchid creates a UNION operator to combine the flows.

To compile each individual mapping into a graph
of OHM operators, Orchid creates a skeleton OHM
graph from the template shown in Figure 11. This tem-
plate captures the transformation semantics expressible
in many relational schema mapping systems. Orchid
then identifies the operators in this template graph that
are actually required to capture the semantics of the
mapping. The unnecessary operators are removed from
the template graph instance, resulting in an OHM graph
that represents the mapping.

For example, consider M2 in Figure 8. Because this
mapping only uses one input table and one output
table, the JOIN and SPLIT operators are removed from
the template graph. The left-most FILTER operator in
the graph receives the filtering predicate in M2. The
BASIC PROJECT after that FILTER captures the simple
column mappings in M2. Orchid then removes all other
operators in the template graph resulting in the simple
TotBal → FILTER → BASIC PROJECT → BigCustomers
flow. M1 and M3 are compiled into OHM instances
using the same procedure. In the case of M1, the JOIN op-
erator receives the join condition between Customers and
Accounts. The SPLIT operator is removed because there
is only one target relation. The complex transformation
functions appear in the left-most PROJECT operator that
is connected to the Customers table. The resulting OHM



for this simple example has (not surprisingly) the same
shape as the one created from the ETL job (i.e., the OHM
graph in Figure 5).

B. Deploying OHM instances as ETL

Orchid can deploy an OHM graph into multiple run-
time environments (e.g., a combined ETL and database
runtime). We first describe how Orchid deploys into a
homogenous environment with a single runtime platform
(RP) and then describe how Orchid deals with heteroge-
nous runtime platforms.

Creating a deployment plan involves a number of
steps, which we illustrate using our running example.
We start with the OHM graph in Figure 5, which may
have been generated from a declarative mapping. Orchid
first assigns each operator to a RP; for the purposes of
the initial discussion, we assume that DataStage is the
only runtime platform available. In Figure 12, we see the
OHM graph of Figure 5, with OHM operators enclosed
by one or more “RP operator boxes”. The chosen runtime
platform is indicated at the bottom of each RP operator
box (e.g., DS for DataStage). In our example, each OHM
node is annotated as supported by DS.

When a runtime platform is registered in Orchid,
it must declare a number of available runtime oper-
ators. For instance, the DataStage RP registers stages
like Transformer, Join, and Filter. Every such runtime
operator specifies which OHM operator(s) it can fully
implement. Some RPs, such as DataStage, offer multiple
alternatives for implementing each OHM operator. For
example, all DataStage stages can perform simple projec-
tions. Thus, the DataStage RP marks all its operators as
capable of handling OHM’s BASIC PROJECT. The Filter
and Transform DataStage stages can implement OHM’s
FILTER operator. Similarly, the OHM SPLIT operator can
be implemented by DataStage’s Copy, Switch, Filter, and
Transform stages. Notice that it is possible that some
OHM operators cannot be implemented with a single
RP operator. For example, a complex PROJECT oper-
ation may require Transform and SurrogateKey stages
in DataStage. When this happens, Orchid attempts to
split the OHM operator into multiple (and simpler) OHM
operators.

At the end of this initial step, all OHM operators in
the graph (except, of course, UNKNOWN operators) are
annotated as supported by one or more RP operators. The
next step is to merge neighboring RP operator boxes to
capture more complex processing tasks that span mul-
tiple OHM operators. In general, reducing the number
of RP operators by exploiting such capabilities results

Fig. 12. Deployment Planning

in better performance characteristics for the operator
graph (i.e., we are trying to reduce the number of RP
operators).

For each operator box in the graph, Orchid checks
for adjacent operator boxes (following the direction of
the edges) that are tagged as supported by the same
RP operator. For example, based on the RP operators
assigned to the FILTER and BASIC PROJECT sequence at
the bottom left of Figure 12, we can group these boxes
into a bigger RP operator box. This merged box can
be implemented with either a single Filter or Transform
stage.

Notice, however, that even if neighboring boxes are
tagged with the same RP operator, this does not neces-
sarily mean Orchid can merge them into larger operator
boxes. Each RP operator registers a template OHM
subgraph that represents its transformation semantics.
For example, the center region of Figure 6 depicts this
template for the DataStage Filter operator. Notice how
this template matches the subgraph of OHM operators
that starts at the SPLIT operator in Figure 12. This is why
all those operators are merged into one RP operator box
that can be implemented with a Filter stage (and, as it
turns out, a Transform stage as well). Table I shows the
stage templates used in the current implementation of
Orchid.

To illustrate a case where we cannot merge two neigh-
boring RP operator boxes, consider the BASIC PROJECT
and GROUP operators in the middle of Figure 12. Tech-
nically, both can be implemented by an Aggregator
DataStage stage. But we cannot merge them into one
Aggregator RP operator box because the Aggregator
template starts with a GROUP operator and cannot match
a subgraph that starts with BASIC PROJECT.



Fig. 11. Operator Template

We do make two simplifying assumptions when merg-
ing neighboring boxes to find a deployment strategy.
First, we merge RP operator boxes as much as possible,
thus preferring solutions that have less RP operators.
Reliable runtime cost information for each RP operator
is needed if we want to compare solutions that use
less merging. We currently lack such a cost model for
DataStage ETL operators. Second, to guide our search
for a deployment strategy, we use a “greedy” strategy
for combining boxes, starting with the operators closest
to the data sources and attempting to combine them
with adjacent operators until this is no longer possible.
Although this is a simple strategy, it works well for
the platforms and example scenarios we have worked
with. More sophisticated strategies considering alterna-
tive overlays are left for future research.

Algorithm 2 shows some of the implementation de-
tails of this process. Each stage template is internally
represented as a graph grammar [16] which are matched
to subgraphs of the OHM DAG. Conceptually, we try
to find the “largest” subgraphs in the OHM DAG that
matches a stage template. We then “reduce” the OHM
graph by replacing the matched nodes with a stage node
that represents the matched template. We then repeat this
process until all OHM operators have been relaced by
ETL stages.

In general, reducing a graph by matching graph gram-
mars is an expensive operation. However, because of the
particular shapes of our stage templates (see Table I),
we do two simplifications in the implementation. Our
stages can be divided into three categories based on how
many input and output schemas they use: linear (e.g.,
Modify), 1-to-N (e.g., Copy, Filter, Transform), and N-
to-1 (e.g., Join). We do not have any stage template
that is N-to-M. The algorithm takes advantage of this by
first matching all 1-to-N and N-to-1 templates first. After
these operators are replaces by the appropriate stages, the
remaining OHM paths can only match linear stages. We

then greedily match them to the longest possible stage
template. Second, templates do not recursively use other
template definitions. This means our implementation can
replace a subgraph of operators nodes into one stage
node and does not need to consider that stage node any
more (i.e., stage nodes will not be combined into other
stage nodes).

Finally, Orchid chooses the RP operator for boxes
that contain multiple alternatives. This choice should
be dependent on the processing costs of the operators,
if such information is available, or on the intended
semantics of the RP operators. In our example, we have
two boxes where we can use a Filter or a Transform
stage. In both cases, a Filter stage would be the natural
choice, because FILTER operators are contained in the
RP operator box, and no complex projection operations
(which would demand a Transform stage) are required.

When there are multiple RP available to deploy the
OHM graph, the merging of neighboring RP operators
is only done for operators marked for the same RP.
An interesting case occurs when one of the RP is
the DBMS managing the source data. Orchid can use
the deployment algorithm to do a pushdown analysis,
allowing the left-most part of the operator graph to be
deployed as an SQL query that retrieves the filtered and
joined data. Currently, Orchid pushes as much processing
as possible to the DBMS by identifying maximal OHM
operator subgraphs that process data originating from the
same source and assigning the operators to the DBMS
platform, if the operator is supported by the DBMS. In
our example scenario (this is not illustrated in Figure 12),
Orchid identifies the operators up to and including the
GROUP) operator as operators to be pushed into the
DBMS. Each one of these operators is marked for
deployment using a SQL Select statement. Merging these
SQL RP operators into larger boxes is done using the
same analysis described before: The SQL RP registers
an OHM template graph that describes the semantics of



Input: O = (V,E): An OHM flow graph O
Input: P : a set of grammar definitions for the ETL

stages (See Table I)
Output: An ETL flow
/* Reduce O by matching the patterns

in P. Reduce first all the N-1 and
1-N stages. */

for v ∈ V do
if isNto1(v) or is1toN(v) then

p ← Best match in P for the subgraph rooted at
v;
Replace the matched nodes with a node
representing the matched stage p;

end
end
/* Now reduce the remaining linear

segments of O. */
for v ∈topological-order(V ) do

if isETLStage(v) then
/* If v was already replaced, do

nothing else with this node.

*/
continue;

end
/* Otherwise, find the best matching

pattern. */
p ← Best match in P for the subgraph rooted at v;
Replace the matched nodes with a node representing
the matched stage p;

end
/* All nodes are now replace with

matched ETL stages */
return O;

Algorithm 2: OHM to ETL

the supported SQL statement. Then, the OHM operators
and matched to this template and the corresponding RP
operator boxes merged as needed. In effect, the SQL
statement is slowly built as the OHM graph is visited
from left-to-right in Figure 12.

VII. CONCLUSION AND OUTLOOK

In this paper we have described Orchid, a prototype
system developed at IBM Almaden that has been in-
tegrated into FastTrack, a component of IBM Informa-
tion Server. Orchid is currently capable of converting
IBM WebSphere DataStage ETL jobs into mappings
that mapping tools like Clio or Rational Data Architect
understand and display. Orchid can also perform the
reverse transformation: given a Clio or RDA-like map-
ping, it can convert the declarative specification into a
DataStage ETL job that captures the same transformation
semantics. Although our implementation currently only

connects three systems (DataStage, Clio, and RDA) and,
thus, it could be argued that an ad-hoc implementa-
tion between each system might be a more practical
approach, we think we have a more scalable and long-
term solution for converting between mappings and ETL
jobs. Based on an abstract ETL operator model, the
operator hub model (OHM), Orchid can be extended
to support additional systems by implementing compiler
and deployment components for their external represen-
tation. Once an external system is registered, arbitrary
conversions between registered systems are possible.

Orchid enables many interesting opportunities regard-
ing rewrite operations, optimization, and deployment
of OHM graphs. Currently, Orchid only supports basic
rewrite heuristics (e.g., selection push-down), and ad-
ditional optimization techniques still need to be applied.
Most importantly, the deployment of OHM graphs needs
further investigation and thorough validation for the full
complexity of the intended deployment platforms, the
range of supported platforms, and the desirable and
applicable strategies in the presence of complex, multi-
platform environments.

ACKNOWLEDGEMENTS

This work was funded in part by the U.S. Air Force
Office for Scientific Research under contract FA9550-
07-1-0223. We thank our IBM colleagues Lucian Popa,
Martin Klumpp, and Mary Roth for the discussions
regarding this paper.

REFERENCES

[1] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth,
“Clio Grows Up: From Research Prototype to Industrial Tool,”
in SIGMOD, 2005, pp. 805–810.

[2] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and
R. Fagin, “Translating Web Data,” in VLDB, 2002, pp. 598–
609.

[3] M. Roth, M. A. Hernández, P. Coulthard, L. Yan, L. Popa,
H. Ho, and C. C. Salter, “XML Mapping Technology: Making
Connections in an XML-centric World,” IBM Systems Journal,
vol. 45, no. 2, pp. 389–410, 2006.

[4] R. Kimball and J. Caserta, The Data Warehouse ETL Toolkit.
Wiley Publishing, 2004.

[5] A. Simitsis, “Modeling and managing ETL processes.” in VLDB
PhD Workshop, 2003.

[6] A. Simitsis, P. Vassiliadis, and T. K. Sellis, “Optimizing ETL
Processes in Data Warehouses.” in ICDE, 2005, pp. 564–575.

[7] H. Pirahesh, J. M. Hellerstein, and W. Hasan, “Extensible/Rule
Based Query Rewrite Optimization in Starburst.” in SIGMOD,
1992, pp. 39–48.

[8] S. Melnik, E. Rahm, and P. A. Bernstein, “Rondo: A Program-
ming Platform for Generic Model Management.” in SIGMOD,
2003, pp. 193–204.

[9] H. Garcia-Molina, J. D. Ullman, and J. D. Widom, Database
Systems: The Complete Book. Prentice Hall, 2001.



[10] H.-J. Schek and M. H. Scholl, “The relational model with
relation-valued attributes,” Inf. Syst., vol. 11, no. 2, pp. 137–
147, 1986.

[11] A. Raffio, D. Braga, S. Ceri, P. Papotti, and M. A. Hernández,
“Clip: a Visual Language for Explicit Schema Mappings,” in
ICDE, 2008.

[12] J. Madhavan and A. Y. Halevy, “Composing Mappings Among
Data Sources,” in VLDB, 2003, pp. 572–583.

[13] R. Fagin, P. Kolaitis, L. Popa, and W.-C. Tan, “Composing
Schema Mappings: Second-Order Dependencies to the Rescue,”
in PODS, 2004, pp. 83–94.

[14] M. Stonebraker, “Implementation of integrity constraints and
views by query modification,” in SIGMOD, 1975, pp. 65–78.

[15] S. Chaudhuri, “An overview of query optimization in relational
systems,” in PODS, 1998, pp. 34–43.

[16] T. Pavlidis, “Linear and context-free graph grammars,” J. ACM,
vol. 19, no. 1, pp. 11–22, 1972.


