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Abstract. This paper presents the results of a simulation study of a heterogeneous computational grid using
different scheduling algorithms. After a definition of robustness based on the concept of work completion
latency is discussed, a method to simulate grids based on Estimated Time to Compute matrices is presented.
Three well-known scheduling algorithms are then evaluated against each other, and the highest-performing
scheduler is then analyzed in detail. The notion of ETC perturbation is presented, and this high-performing
scheduling algorithm is found to be relatively robust against uncertainties in estimated task completion times.
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[. Introduction geographically widely separated (i.e., across continents) and are

OMPUTATIONAL grids are becoming more prevalent agypically owned by c_iifferent entities. Rather t_han completely

the cost of bringing together disparate computing resourc€&VN'N9" & node, a grid may use excess .Computlng capacity .from

declines. However, a number of challenges remain before thgg%chlnes al_so doing other work to utilize spare computa_tlo_nal

grids can be utilized efficiently. This paper explores the resuff@Wer (for instance, the SETI@Home project uses a similar
of using several well-known scheduling algorithms to sched @Proach). A computational grid, then, can be seen as an adaptive
work on a grid under probabilistic work arrival rates and varyingyStem that provisions extra computational capacity as demand
task completion times. fequires or as machines fail, and assigns work to nodes where

First, we give a definition of computational grids and argue thH{e work can be done most eﬁectl\{ely. .
As promising as such a description of a full-fledged grid

robustness is an important feature of economical grid computing. .
Then we proceed to develop a rigorous definition of robustne%%unds' a number of obstacles remain before systems that have all

based on the concept of work completion latency. With this defirfe above properties can even be constructed, much less utilized

tion as our basis, we present a method for modeling computatio giactwely. For our purposes, we will study computational grids

grids and describe a software simulation framework we developt &t are one step removed from their clu_ster counte_rparts. our
ids will not expand or contract over time, nor will nodes

to analyze different scheduling algorithms under a variety ¢f. . N C
workloads. We then describe three scheduling algorithms aﬁtg' nor will there be significant communication delays between

give the results of two experiments: the first to investigate t des_; _however, °“f9”dS.W'” be ”.‘ade of nodes of heterogeneous
performance of the three algorithms relative to each other, and ab.|I|ty. By studying grids of.th|s type, we hope tp enable an
second to investigate the effects of variation in work completio"aﬁ/()lUt'onary approach to studying more complex grids.

times on a specific scheduler. B. Costs and Benefits

Why would anyone consider using a computational grid instead

A. What are Grids? of a more traditional system to solve a particular problem? Simply

The definition of acomputational grids still a subject of some Put, grids have one main advantage over their cluster cousins:
debate. What follows here is a short definition of a computatiorffe Provisioning ability of the grid enables more cost-effective
grid sufficient to give an adequate background for the rest of thglutions. The advantage stems from both the ability of a grid to
paper; for a more in-depth definition, see [4]. Let us begin B4§€ only sufficient computing capacity as demands require and the
giving an intuitive definition of what we mean by a computationability of a grid to use specialized hardware. Consider the case of
grid: a computational grid is a collection nbdes each of which @ grid that needs to process a task involving massive amounts of
may be thought of as a system that can perform work and H&Stor math: the grid could provision a computer with specialized
access to a network. Many systems share this property, includftgjdware to solve the problem quickly. o _
computer clusters. However, a grid is unique in that nodes onOWever, there are also certain costs to using grids. Especially
the grid vary in capability, and that the grid may provision mord an industrial settlng,. there are several proble.ms that must
nodes to do work, or release nodes from the grid at any time be overcome before grids can be adopted for widespread use.

In addition to these unique properties, the grid also has sevér@mely:
properties stemming from its distributed nature, namely, thate Given the heterogeneous and transient nature of resources
nodes may fail (become unable to perform work due to software ©On the grid, is there any way to ensure a certain level of
or hardware problems) at any time, and communication efficiency Minimum throughput, orobustness against variability in

between nodes can vary widely. In addition, nodes are typically the er_1vironment, like ”00!9_ fai_lures?
o How is the cost of provisioning extra resources balanced
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o How is amount of data that must flow between nodesnd acustomer The term “customer” is used to partition the set

minimized? of jobs into separate classes which can then be used to develop a
« How does the grid make decisions about where to schedslestem performance feature. The term “customer” comes from the
tasks? industry perspective of customers submitting work, but in reality

Because we are studying grids that do not provision extp&y other sort of identifier could be used, or a single customer
nodes, do not have nodes that fail, and have infinitely fa@@uld be used. Also note that for convenience we often speak of
communication links, the question we are investigating is thid:job’s applications rather than a job’s path's applications.
how are tasks scheduled to a grid of heterogeneous resources tdhe grid’s scheduleraccepts jobs and distributes their con-
ensure a certain level of robustness? stituent applications among nodes. For our purposes, we are

lan Foster, of distributed computing fame, goes so far as &suming a central, omniscient scheduler that may schedule work
believe that a grid is not really a grid unless it is robust. In [3pS it becomes available; in practice, such a scheduler might be
one of his three requirements for a grid is that it a distributed algorithm without access to all the information our

..delivers nontrivial qualities of servicdA grid scheduler has. Investigating robust, distributed schedulers is one

allows its constituent resources to be used in a coor- area for future research.
dinated fashion to deliver various qualities of service,
relating for example response time, throughput, avail- A. Toward a Definition of Robustness

ability, and security, and/or co-allocation of multiple re- A definition of robustnessmakes sense only relative to a
source types to meet complex user demands, so that the perrhation parameter. In other words, a grid might be robust
utility of the combined system is significantly greater  54ainst uncertainty in job completion times, or robust against un-
than the sum of its parts.) [Parentheses are Foster's]  certain work arrival rates, meaning that variations, or uncertainty,
Creating a robust scheduling mechanism, even for our cagethese estimated times or changing work arrival rates do not
of limited grids, is beyond the scope of this paper. Rather, heseverely affect the grid'performance featurdthus, robustness
we will discuss the performance of scheduling algorithms undigr necessarily grid and customer specific, because “severely” is
assumptions of node heterogeneity, probabilistic task arrival ratgsrelative term). The performance feature is some performance
and uncertain task completion times. By investigating well-know#etric on the grid as it is running. For instance, one interesting
algorithms, we can find a certain base level of robustness thatformance feature might be the number of jobs completed per
specialized scheduling algorithms should be able to impro¥econd; another might be the amount of data processed.
upon. This analysis, and its accompanying simulation framework,1) Our Performance Feature: Latencylo evaluate robustness,
is offered as a baseline for future evolutionary steps towajgk must choose our performance feature first. We proceed to give

constructing robust schedulers for more complex grids. a formal definition of our performance feature for this simulation;
informally, our performance feature is the percentage of jobs that
Il. Problem Setup “do not take too long” to finish.

For the rest of this paper, we may assume that a grid refers to Prder t_he set of all Jo_bs S0 thgbb(j) denote_s thg-th Job n
member of the special class of grids defined above that lacks & ordering. Then, definetart(j,7) to be the time that thé-th
type of dynamic provisioning: all nodes on the grid are allocatéPPlication ofjob(j) begins executing and defingnish(j, 1) to
at startup and remain that way throughout the lifetime of t the time that the-th application ceases executing. We wil

grid. Furthermore, we may assume that all the communicatiiSume that . o
links between nodes are reliable, and that communication latency start(j, i) < finish(j, 1)
is zero and bandwidth infinite. and that

Define a path to be an ordered sequence applications finish(j,i) < start(j,i+ 1)

(Ai,...,An) such that the output from applicatiofy,_; flows

to application4,,. Intuitively, we can think of tasks as consistingglthough some realistic paths might violate the second inequality

of several pipeline stages, where the output from one pipeliffer instance, an application that only needs the first part of

stage flows directly into exactly one next stage, and each stdge previous application’s data might conceivably behave in this

receives input from exactly one prior stage. In practice, eaftanner). Finally, defingfinish(j, [job(j)|) to be the execution

application has a different degree of parallelism, meaning tH#ne of the entire job, and note that it is equal to the completion

some applications may begin executing before all the data frdie of the last application in the job’s path. Define fagency

the previous application is available. However, for the purposes/efi) of job j with its initial resourcer;,;; to be

our simulation, we assume that there is no such overlap: a path’s N e s e g .

application 4,, must finish before its next applicatiomnﬂpcanp L) = finish(3;1job()]) — arrival(rini)

start. An example of a task could be the multiplication of tewhere arrival(r;,;;) denotes the time that the initial resource

matrices, where each application multiplies the result from iis first available. LetL™**(;j) denote the maximum acceptable

previous application by a matrix and then feeds the result to tlgency L(j) of job(j) for customerc (this number, specified by

next application. Note that an application is the smallest unit tife customer, simply denotes how long the customer is willing to

work that must be run completely on one node. wait for this job to complete. This notion of acceptable latency
Define ajob or task to consist of a path, amnitial data is a key component of the performance feature: for modeling,

resource (the initial data for the first application in the path)we can assume it to be a parameter, but in practice, this number



would likely be defined by the customer as part of a service levelNote that for our simulation, we report the performance
agreement with the company providing the grid). Then, we defifeatures for grids rather than their adequate performance. We
J.(t) to be the set of all jobs that arrive at timefor customer do this because the notion of adequate performance is tied to

c. We also define the helper function the customer-specified maximum job latency failure rate; the
] definition of the performance feature is not. This definition of
1(z,y) = {1 itz >Z_/ adequate performance is offered as the basis for a definition
0 otherwise. of adequate performance that might be used in practice as the
_ ) i i foundation of a service level agreement by the grid provider and
Now, we definen.(t) to be thejob latency failure ratemeaning ,stomer.
that 3) Our RobustnessAs stated earlier, a system must be robust
ac(t)= > 1(L(), LI"(4)) relative to some perturbation parameter. There are many such
Vi€de(t) parameters, including

Intuitively, a.(¢) is the number of jobs, submitted by customer * Node failures _
¢ at timet, that are taking too long to finish. Theerformance ~ * Variations in job arrival rates

feature f(T") of the grid over a discrete intervdl is then simply ~ * Variations in estimated job completion times _
« time (i.e., a robust system'’s performance does not vary with

FI) =Y acn) time)
Ve VreT We have chosen variation in job completion times as our pertur-
Intuitively, the performance feature of a grid is the number aation parameter for this simulatioq. The simulation fram'ewo.rk
jobs missing their acceptable latencies. Generally, we will dividig€!f also could support an evaluation of robustness against job
£(T) by the number of jobs arriving during the interval to arrival rates; this is another area for future work.
obtain the performance as a more useful percentage. )

2) Adequate PerformanceBefore we can define what weB: Calculation of ETC Values
mean for our grids to be robust against variations in a perturbatiorin order to evaluate the robustness of a scheduling algorithm
parameter, we must first define what it means for the grid to Bgainst variation in estimated job completion times, we must first
performing adequatelywWe will then say that the grid is robustfind a way to model these completion times. We use the method
when it still performs adequately when probabilistic variations iéescribed in [5] to model the application execution times for our
the environment, expressed through the perturbation paramegénulation. A brief synopsis of the relevant points, along with our
are introduced. modifications to the method, is described in this section.

Let the function37***(t) be themaximum job latency failure 1) ETC Matrices: The term ETC valueis short-hand for
rate for customere for the jobs submitted at time This number, “EstimatedTime to Compute value.” An ETC value represents
specified by each customer, indicates the number of jobs they #@ amount of time that an application needs to run on a given
willing to accept taking longer than their maximum acceptablode in order to complete — every ETC value must be relative
latency at a given time. In practice, this will probably be specifid@ some node; there is no notion of how long an application
as a percentage, but without loss of generality we can assume f@¢es in the abstract. ABTC matrixis a matrix that has an ETC
be an integer. This quantity necessarily varies with time becawgdue for every application (the rows) and node (the columns).
it could be the case that a customer is willing to accept moféis definition can best be described by an example; see Table
failures at certain times than others. Theéequate performance |. Note that because of the requirement that every entry in the

metric 6.(t) for customerc is then defined as matrix have a value, we are assuming that every application can
be run on every node. Extending this method to take into account
be(t) = B (1) — ae(t) applications that may only run on certain nodes is an interesting
The system iperforming adequatelyhen for every customer extension.
¢, and at every moment of timg ¢.(t) is positive. Intuitively, TABLE |
a system is performing adequately when, at every moment, e#¢hEXAMPLE ETC MATRIX FOR A PATH WITH 7 APPLICATIONS ON A GRID OF
customer is satisfied that not more than some given percentage 5 NODES
of their jobs are taking too long. T T T
Of course, this definition of adequate performance is a boolean i 2L 71 45
condition: either the system is adequately performing or it is not. az | 6 | 14 | 11 | 18
We can use the adequate performance mét(ig to create other, ag | 17 | 13 | 13 | 15

as 8 19 | 12 | 16

©o| o~ 5 B ©f ©of &

more nuanced definitions of adequate performance; a number of T35 T 9 10
examples come readily to mind. We could say that a system ag | 10 | 12 | 13 | 21
is maximally adequately performing whefn(t) is always the a7 | 4 [15] 1711

maximum possible over any, or that a system is averagely

adequately performing when the average valué ¢f) over the 2) Creating ETC Matrices: [5] gives a generous development
system lifetime is greater than zero. Investigating application$ the procedure we use to generate ETC matrices. In essence,
of the adequate performance metric and associated performatheeprocedure used to create an ETC matrix for a given path takes
features is one of the important directions for future work. as input parameters



Mutask measures the central tendency of the ETC valussbeing run but whose previous application has not finished will

for applications on “average” nodes wait until the previous application has finished before starting.
Vtask measures the variation of ETC values from MuThis is a simplifying assumption: in reality, some applications
task may begin before their previous application has finished. For
Vmach measures node heterogeneity instance, a sequence of applications that are streaming data to

The procedure then uses the parameters to create several gaffh other has this property.)

distributions, which are then sampled to create the values in thel'he scheduler is invoked whenapping eventsccur. During
matrix. The algorithm is given in Figure 1. a mapping event, the scheduler may reorder each node’s work

gueue (therebynappingapplications to nodes), and assigns new
Fig. 1. The CVB Method for generating ETC Matrices. Summarized from [5].0bs that have arrived to various nodes. In general, mapping events
occur whenever

e a new job arrives

« a node enters or exits the grid

« an application finishes or is aborted

« acceptable robustness/performance changes

Inputs: Vtask, Vmach, Mutask
Outputs: €[][] / the ETC matrix
Begin:

Let Atask = 1/(Vtask*Vtask)

Let Amach = 1/(Vmach*Vmach) However, for the purposes of this simulation, mapping events are
Let Btask = Mutask/Atask only fired when new jobs arrive, and when applications finish.
For each task i In general, a robust scheduler will need to take robustness into
Let g = Gamma(Atask, Btask) account when making mapping decisions. It is interesting to ask,
Let Bmach = g/Amach however, how well scheduling algorithms which are not aware
For each node j: of robustness will perform. We have selected the following three
elij] = Gamma(Amach, Bmach) scheduling algorithms to study:

« FCFS First come, first serve. Maintains a queue of applica-

] ] ) ) tions, in the order they arrive at the grid, and assigns them to
This method is capable of generating ETC matrices that have o odes in the order the nodes become available. When an

high-task, hig.h—machine heterogeneity; high-task, low-machine 5. njication finishes running, if there is another application
heterogeneity; and low-task, low-machine heterogeneity. Unfor- 14 1 1o complete that application’s associated job, then that
tunately, this method cannot generate low-task, high-machine application will be added to the end of the incoming work

heterogeneity matrices. _A_ related qlgorithm can generate exactly queue. Thus, this is a FCFS algorithm on applications, not
those cases that the original algorithm cannot supply. However,

. i . . . X jobs.
for our simulation, we will be using medium-task, medium- | pr Round-Robin. Runs all the applications from the first
machine heterogeqelty matrices. ) job on the first node, all the applications from the second
Unfortunately, this method does not generatmsistentETC ; ; ;
matri A );] istont matrix has th gr v it nod job on the_ secor!d r!ode, and so on. It is also possible to
atrices. A consistent matrix has the property oden round robin applications, rather than paths, to nodes, but
has a lower ETC value than a node for any task, then the path-based round robin was chosen for simplicity.
same is true for all tasksThis is a desirable property is many . \vicT: Minimize Completion Time. Assigns each application
situations; as the authors of [5] discuss, an Intel Pentium Il o job to the set of nodes that will spend the least time

would likely be faster than an Intel 286 for every conceivable performing computation (i.e., the set of nodes with the
task. There is a method for extracting consistent matrices from g rtast latency, but not nec’essarily the set of nodes that
inconsistent m_atrlces; h_owever, bef:ause the generated matrices,; produce the result first). This is achieved by keeping a
tend to bepartially consistent meaning that they have at least priority queue for each node that holds its work to be done,
one consistent sub-matrix, and because inconsistent and partially- 4 qared such that jobs that entered the grid earlier are given
consistent matrices tend to occur in environments where tasks higher priority. When an application finishes running, the
have vastly different computational needs (i.e., some are floating- ot application that must run to complete the job is placed
point intensive, others need multiple threads, etc.), we feel that ;i {he appropriate spot in the appropriate quevete that
using inconsistent matrices is justified. _ _ this is the only scheduler that uses ETC values when making
Our extension of the method given in [5] is to simply apply  gchequling decisionsAlso note that a priority queue is

the method to generate application ETC values for paths. Thus, |,sad pecause although a regular queue would also minimize

a pathis an ETC matrix. completion time, it would do so without regard to latency. In
other words, our heuristic is that to help minimize latency,
C. Scheduling older applications should be run before new applications,

The grid scheduler assigns applications to nodes. Each node can Which is implemented by the priority queue. This heuristic
run one application at a time, and must run that application to does not hold in all cases, but it is a good rule of thumb that
completion. (By splitting multi-cpu machines into a set of single- ~Makes for a more realistic (and interesting) scheduler.
cpu nodes, powerful machines may in fact run more than oRach of these schedulers assumes perfect knowledge of the grid.
job at a time.) The scheduler maintains a queue of work for eathis means that, when a node completes a task, the scheduler is
node, and may re-order the queue at any time. An application thatified; the scheduler itself maintains a queue of work for each



node. In practice, with a grid distributed over continents and withe ma = .01 (The central tendency for one job arrival per tick)
large communication latencies between nodes, implementing a mavar = .005 (Variation for ma (50%))

centralized, omniscient scheduler might be impractical. However,For each template job, we use the following algorithm to gener-
it is useful to know how an idealized scheduler performs igte the three parameters for its ETC matrix (the Gaussian function
simulation before attempting to implement any scheduler §amples a Gaussian curve overl..1), and the uniform random
practice. function samples over the interval in the call's parameters):

vtask = nextGaussian()*vtaskvar+vtaskinit
. mutask = nextGaussian()*mutaskvar+mutaskinit
A. Overview numtasks = numapps +
Our goals for the simulation were two-fold. First, we measurediniformRandom(-numappsvar, numappsvar)
the performance features of each of the three schedulers, underﬁ]e acceptable latency for each template job, and thus for

variety of conditiong, to get a gen_ergl ide_a of how the schedul_%rgch job instance of that template, is defined to be 1.5 * Mutask
perform. Then, we introduced variations in the actual complethnnumapps_ (Note that as different template jobs have different
times for tasks and measured the robustness of the MCT SChedk'/{E{ask and numapps values, not every job has the same accept-
to (’;hese pertburt_)atlcl))ns n ETngaludeib(l:Vge donly examllz_rllt_eg MI%BIe latency.) This choice of acceptable latency is arbitrary, as in
under pertur at|o_n ecause and 0 notuse va l}5‘?§ctice it would be specified by the customer; this value seems
Although perturbing task completion times for these two schefge 5 reagonable one. Also note that by defining the acceptable
ulers would likely cause variations in robustness from simulaticrgtenCy this way, we are essentially simulating a system with a
to simulation, the changes in robustne_ss are unintgrestingf t.)ecaéiﬁﬁle customer. Finally, note that we simulating a system that has
ETC values are not used when making scheduling demsmnga e numbers of a few types of identical jobs. An example of

perturbed system is essentially equivalent to another system WIEh a system might be encountered on a grid that has to process
different ETC matrices; this is not the case in an MCT SySte”mousands of database reads and writes

[ll. Simulation Description

In addition, we say that for each template job, its arrival rate

B. General Framework is a Poisson function with mean
The_5|mulc_31t|on framework_, written in .Java, is relatively simple, oo = nextGaussian() * mavar + ma

The simulation runs a series aicks simulating the passage _ _ _ _
of time. A Scheduler is notified about mapping events and Note that each template job has its own arrival function; as
assigns applications to nodes. TA@plication s then spin the number of template jobs is increased, the system will become
repeatedly as ticks occur, notifying the framework when they afigore loaded. For all the simulation runs, we use 20 template jobs.
complete. Eachlob is given an ETC matrix using the method

described above. D. Simulation Body

The body of the simulation is as follows:

1) Create the 20 template jobs and associated ETC matrices.
Because it is computationally expensive to generate ETC2) For each tick, do the next 3 steps:

matrices for hundreds of jobs, the simulation framework creates a) For each template job, query its arrival function to

C. Parameters

a number oftemplate jobsEach template job has an associated determine if an instance of it should arrive this tick.
In order to simulate realistic environments, we must decide on c) If applications have finished, notify the scheduler.

vr;alues of Vtask, Vmacél_,rgnd M}Jtaskbforheach Le”(;p.lati,pb sc1)3) Finally, at the end of 10,000 ticks, count the number of jobs
that we can “gengrallttf . matrices y't e method In Figure 1.7 y ot have finished within their acceptable latency, those that
(Qf course, realistic is a relative term; our gndS are already o \iolated that latency, and those still in progress. 10,000
highly idealized. By realistic ETC values, we simply mean ETC ticks were chosen to give the system enough time to enter
values that might conceivably be encountered in practice.) To a steady-state and to simulate long running grids
do this, we created the following initial values from which w . . . - '

-ach simulation run is given a specified number of nodes; we

deviate randomly as we create template jobs (how we do so . .
be described afterward): vary the number of nodes while keeping the workload constant
hinit = 4 (Th ' iral tend £V h and measure performance. An average job has around seven
» vmachinit = .4 (The central tendency of Vmach) applications that each take around 20 ticks; therefore a steady-

« Vvtaskinit = .4 (The central tendency of Vtask) : : :
state will certainly have been reached by 10,000 ticks.
o mutaskinit = 20 (The central tendency of Mutask) W ny hav y I

« vtaskvar = .2 (Variation for vtaskinit) S _

. mutaskvar = .1 * mutask (Variation for mutaskinit (2 ticks)fF- How Realistic is this Environment?

« numapps = 10 (The central tendency for number of apps peiGiven our already highly idealized conception of grids (no
job) node failures, no communication latency, etc), it is natural to ask

o nNumappsvar = 7 (Variation for number of applications pdrow realistic this environment is. If we look at the sample ETC
job) matrix in Figure 1, we see that the times are not implausible for



certain situations. Especially on grids where nodes are running
other applications concurrently (i.e. the node is not “owned;”

the grid is using “spare cycles”), large variations in ETC values

would be expected. The issue of communication link latency is
more difficult. Presumably, for certain grids and applications, we
can simulate communication link latency by adding appropriate
extra time to a job’s ETC values. For other grids, allowing each

application to pull data as soon as it is available from its prede-
cessor application could hide communication latency. Developing
an abstraction to allow use of ETC matrices with parallelizable
jobs, and with varying communication latency and bandwidth, is
an important direction for future research. However, we feel that
this environment is still worth investigating, especially given the

youth of the field.

IV. Results
A. Results for Adequate Performance

1) Preliminaries: Each run of the simulation consists of te
runs of the simulation body above. The statistics are totaled acrql&.;s
the loop bodies, but the template applications are regenerated and

the simulation reset during each execution of the loop body. Tiee .

results are summarized in Tables 2-5. “OK,” “Late,” and “IP”
refer to the number of jobs that finished within their acceptable
latencies, finished outside their acceptable latencies, and did not
finish as of 10,000 ticks, respectively. Because the performance
feature is meant to capture the steady-state of the system, jobs in-
progress at the end of 10,000 ticks were ignored while calculating
performance. The performance is the percentage of jobs that

TABLE IV

MCT RESULTS

Nodes | OK Late IP Perf (%)
1 2 14 1739 0.125
2 26 91 | 1647 0.222
4 103 | 262 | 1416 0.282
8 401 | 405 | 1013 0.496
16 1471 | 62 351 0.960
20 1648 0 134 1.000
24 1697 0 120 1.000
28 1653 0 95 1.000
32 1756 0 107 1.000
64 1799 0 63 1.000
1 Fig. 2. FCFS Results Graph
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finished within their acceptable latency, as defined earlier.

2) Data: See Figures 2-4 and Tables II-IV.

TABLE Il
FCFS RESuULTS

Nodes| OK | Late IP Perf (%)
1 0 0 1820 0.000
2 0 0 1793 0.000
4 2 24 | 1762 0.077
8 15 93 | 1672 0.139
16 108 314 | 1415 0.256
20 271 | 394 | 1194 0.408
24 504 | 464 | 829 0.521
28 866 | 346 | 674 0.715
32 1397 6 362 0.996
64 1557 0 323 1.000
TABLE Il
RR RESULTS
Nodes| OK | Late IP Perf (%)
1 4 15 1810 0.211
2 25 73 | 1755 0.255
4 72 179 | 1560 0.287
8 134 | 271 | 1380 0.331
16 375 | 432 | 1046 0.465
20 576 | 413 | 874 0.582
24 837 | 350 | 682 0.705
28 1029 | 310 | 574 0.768
32 1256 | 116 | 442 0.915
64 1511 0 327 1.000

3) Discussion: When interpreting the data, it is important to
remember that achieving a steady-state has nothing to do with the
performance features. For instance, for FCFS with small number
of nodes, very few jobs are finishing; this is because the scheduler
is assigning applications to nodes in a way that precludes jobs
from finishing. This is, in fact, a steady-state, where there simply
aren’'t enough nodes available to finish jobs quickly enough.

We see that both FCFS and RR have similar performance; both
algorithms required a large number of nodes before maximum
performance was achieved. MCT attained maximum performance
extremely quickly, as we would expect for an algorithm that
schedules jobs to minimize completion time.

It is interesting to note that FCFS consistently tended to
perform slightly more poorly than RR. This can be explained
by remembering that FCFS, when an application completes, will
add the next application in the associated job to the end of the
work queue, thereby requiring that application to wait for some
time before starting. In effect, FCFS adds a long delay between
applications in a job when the system is overburdened. Both
RR and FCFS achieved a steady state maximum performance
at around 30 nodes, however, because both FCFS and RR tend
to execute applications on average nodes (that is, FCFS will
assign essentially a random node to an application, and RR will
assign a different random node). Because both assignments are
random and average, we would expect maximum performance to
be achieved in roughly the same spot.



Fig. 3. RR Results Graph estimates of job completion times; therefore, the actual distribu-

19 tion of job completion times for that job template should be a
Gaussian centered at the ETC value. In a completely perturbed
P 754 system étcvar=1 ), the ETC value is the center of a uniform
? ' distribution whose average is the ETC value. For systems in
f between these extremes, a weighted average of the two values
? 5 is used. We define this variation from a Gaussian distribution to
rg‘ be theETC perturbation Figures 5 and 6 demonstrate high and
g low perturbation.
e 257 Other definitions of perturbation are possible. For instance,
rather than using uniform and Gaussian distributions, other dis-
0 S tributions could be used; or, perturbation could correspond to
1 2 4 8 16 20 24 28 32 64 the (_:orr_elauon of ETC va]ues and the ac_:tual s_amplgs from. the
distribution. Our definition is offered as a simple, intuitive starting
14 Fig. 4. MCT Results Graph Fig. 5. Low Perturbation
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B. Results for Robustness
Lo . . . Fig. 6. High Perturbation
1) Preliminaries: In a sense, the above analysis simply con-

firmed what we might have expected: MCT performs much better
than the other algorithms. We saw that MCT achieves perfect

. . |
adequate performance for our environment when it has aroq.gd | ETC Value
16 nodes. It is then natural to ask what MCT's robustness against [

e . ) X e
variations/perturbations in ETC values is. In other words, hog /

does MCT perform when the ETC values it is given no Iong%
match the actual time it takes tasks to complete? :
To introduce uncertainty into ETC values, we calculate ET& |
matrices as usual. Then, when a job begins running, we assign it [
a different time to completion based on a parametevar [
[

|

actualetc = ((1-etcvar)*(etcvar)
* nextGaussian(-oldetc, oldetc) Job Completion Time
+ oldetc
+ (etcvar)*nextUniform(-oldetc,
oldetc) + oldetc)/2

To determine how robust MCT is against ETC variation, we
useetcvar as the perturbation parameter and examine adequate
performance as above. We vaetcvar is increments of .1 (this

Thus, the scheduler assigns jobs to nodes basedotual increment is arbitrary; it is a compromise between too few and
estimatesof completion times; before, when ETC values wertoo many data points). Each simulation runs for 10,000 ticks, as
thereal completion times, the ETC values were perfect estimatdmfore; however, these simulations are run three times and then
Now the ETC values truly do estimate uncertain completion timdheir results averaged. For the sake of space, all the results are

The intuition behind the formula is straightforward: in a systemot included here.
that is unperturbedefcvar=0 ), the ETC values will be true 2) Data: The data are available in Table V.



TABLE V

MCT VARIATION RESULTS be the case that ETC matrices, even when they are only rough

estimates of underlying job completion times, could be treated as

nodes| 0 | 2 | 4] 6] 8] 1 | Max-Min true estimates without affecting robustness. Although more work
; %i -;i %i 32 -ig gé ég is required to generalize our result, if ETC matrices could be

7 ST T 29T 2931 30 31 10 used |n.th|s way, then we are one step closer to creating robust
8 47 | 44 | 47 | 46| 49 | .43 .06 scheduling algorithms.

16 94| 96| 96 | 97 | 97 | .95 04

20 10 10| 10| 1.0| 1.0 | 1.0 0.0

VI. Related Work

The concept of computational grids, and grid computing in

3) Discussion:We see that MCT is remarkably stable againgteneral, is being studied by researchers in many fields, including
perturbation in ETC values. In fact, all degrees of perturbatidnigh-performance computing, networking, distributed systems,
seemed to make very little difference. However, performaneg&d web services. [4] is an extensive introduction to what a com-
values did tend to be slightly more diffuse than in the first expgputational grid actually consists of, and what is required to imple-
iment, hence the need to repeat the trials more than once. Thignt it. The Globus Consortiunhitp://www.globus.org )
stability suggests a more general result: as long as ETC valies: consortium of dozens of companies, government agencies,
represent the average actual completion times of the associated universities that is creating an open standard for grid devel-
jobs, then the actual underlying distribution of the job completiompment using web-services as an RPC mechanism.
times does not matter to MCT. This result could potentially be The modeling of computational grids with heterogeneous re-
generalized to any scheduler, indicating that ETC matrices migtaturces is just beginning to be explored. [5], published in 2002,
be useful as inputs to actual robust schedulers, rather than ordy point to no directly related work in the field.
being useful as tools for a simulation. This possibility would Scheduling tasks of unknown duration on distributed systems
drastically increase the utility of using ETC values for schedulirig investigated in [2].
decisions, as it demonstrates that a concept as simple as an ETChe evaluation of scheduling algorithms focused on efficiency
value could be useful in practice. A mathematical proof of thisther than robustness is explored in [1].
result for MCT is one direction for future work. The construction of actual grids for industrial and scientific

Of course, caution is urged. It is impossible to tell, from thiwork has been undertaken by many companies and scientific
experiment alone, whether this result is general or if it is the resgitoups. One particular success story is the Grid 2003 project
of this particular system and its associated ETC matrices. Kottp://www.ivdgl.org/grid2003 ), which has devel-
instance, we cannot know whether this stability will change if jobsped a grid consisting of 2000 CPUs spread across the world.
are inserted at a slightly faster rate; we also cannot know whethefhe development of robust scheduling mechanisms is being
this result holds for any scheduler besides MCT. The stability ifvestigated by IBM. Jay Smittb{gfun@us.ibm.com ) is one
MCT might be related to the MCT algorithm itself rather thawwontact point for this work.
ETC values being averages of actual completion times. Verifying
this result for other environments and with other schedulers is yet Acknowledgements
another direction for future work. : . . :

In addition, even if ETC matrices do turn out to be useful in | would like to thank Jay Smith of IBM for his help in

. : . . . creating the simulation framework and writing this paper. His
ractice, effectively calculating the ETC matri for a given gri L2 X . .
P y 9 atrices for a given g |(|£vest|gat|ons of ETC matrix methods and modeling techniques

with a given workload is still an open problem. Approximationsr ed invaluable. and his definiti f robust tral t
created with the described method would be an excellent fi ﬁl%vreslea\llrcrl: ' ! inition of robustness was central to

step, but the problem is not trivial, and should prove to be an .
interesting area to investigate. Scheduling methods that do no{ would also like to thank Professor Mendel Rosenblum for

require estimates of completion times are investigated in [2]. graciously agreeing to supervise my work this quarter.
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