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Abstract. This paper presents the results of a simulation study of a heterogeneous computational grid using
different scheduling algorithms. After a definition of robustness based on the concept of work completion
latency is discussed, a method to simulate grids based on Estimated Time to Compute matrices is presented.
Three well-known scheduling algorithms are then evaluated against each other, and the highest-performing
scheduler is then analyzed in detail. The notion of ETC perturbation is presented, and this high-performing
scheduling algorithm is found to be relatively robust against uncertainties in estimated task completion times.
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I. Introduction

COMPUTATIONAL grids are becoming more prevalent as
the cost of bringing together disparate computing resources

declines. However, a number of challenges remain before these
grids can be utilized efficiently. This paper explores the results
of using several well-known scheduling algorithms to schedule
work on a grid under probabilistic work arrival rates and varying
task completion times.

First, we give a definition of computational grids and argue that
robustness is an important feature of economical grid computing.
Then we proceed to develop a rigorous definition of robustness
based on the concept of work completion latency. With this defini-
tion as our basis, we present a method for modeling computational
grids and describe a software simulation framework we developed
to analyze different scheduling algorithms under a variety of
workloads. We then describe three scheduling algorithms and
give the results of two experiments: the first to investigate the
performance of the three algorithms relative to each other, and the
second to investigate the effects of variation in work completion
times on a specific scheduler.

A. What are Grids?

The definition of acomputational gridis still a subject of some
debate. What follows here is a short definition of a computational
grid sufficient to give an adequate background for the rest of the
paper; for a more in-depth definition, see [4]. Let us begin by
giving an intuitive definition of what we mean by a computational
grid: a computational grid is a collection ofnodes, each of which
may be thought of as a system that can perform work and has
access to a network. Many systems share this property, including
computer clusters. However, a grid is unique in that nodes on
the grid vary in capability, and that the grid may provision more
nodes to do work, or release nodes from the grid at any time.

In addition to these unique properties, the grid also has several
properties stemming from its distributed nature, namely, that
nodes may fail (become unable to perform work due to software
or hardware problems) at any time, and communication efficiency
between nodes can vary widely. In addition, nodes are typically
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geographically widely separated (i.e., across continents) and are
typically owned by different entities. Rather than completely
“owning” a node, a grid may use excess computing capacity from
machines also doing other work to utilize spare computational
power (for instance, the SETI@Home project uses a similar
approach). A computational grid, then, can be seen as an adaptive
system that provisions extra computational capacity as demand
requires or as machines fail, and assigns work to nodes where
the work can be done most effectively.

As promising as such a description of a full-fledged grid
sounds, a number of obstacles remain before systems that have all
the above properties can even be constructed, much less utilized
effectively. For our purposes, we will study computational grids
that are one step removed from their cluster counterparts: our
grids will not expand or contract over time, nor will nodes
fail, nor will there be significant communication delays between
nodes; however, our grids will be made of nodes of heterogeneous
capability. By studying grids of this type, we hope to enable an
evolutionary approach to studying more complex grids.

B. Costs and Benefits
Why would anyone consider using a computational grid instead

of a more traditional system to solve a particular problem? Simply
put, grids have one main advantage over their cluster cousins:
the provisioning ability of the grid enables more cost-effective
solutions. The advantage stems from both the ability of a grid to
use only sufficient computing capacity as demands require and the
ability of a grid to use specialized hardware. Consider the case of
a grid that needs to process a task involving massive amounts of
vector math: the grid could provision a computer with specialized
hardware to solve the problem quickly.

However, there are also certain costs to using grids. Especially
in an industrial setting, there are several problems that must
be overcome before grids can be adopted for widespread use.
Namely:
• Given the heterogeneous and transient nature of resources

on the grid, is there any way to ensure a certain level of
minimum throughput, orrobustness, against variability in
the environment, like node failures?

• How is the cost of provisioning extra resources balanced
against the benefit of having extra resources?



• How is amount of data that must flow between nodes
minimized?

• How does the grid make decisions about where to schedule
tasks?

Because we are studying grids that do not provision extra
nodes, do not have nodes that fail, and have infinitely fast
communication links, the question we are investigating is this:
how are tasks scheduled to a grid of heterogeneous resources to
ensure a certain level of robustness?

Ian Foster, of distributed computing fame, goes so far as to
believe that a grid is not really a grid unless it is robust. In [3],
one of his three requirements for a grid is that it

...delivers nontrivial qualities of service.(A grid
allows its constituent resources to be used in a coor-
dinated fashion to deliver various qualities of service,
relating for example response time, throughput, avail-
ability, and security, and/or co-allocation of multiple re-
source types to meet complex user demands, so that the
utility of the combined system is significantly greater
than the sum of its parts.) [Parentheses are Foster’s]

Creating a robust scheduling mechanism, even for our case
of limited grids, is beyond the scope of this paper. Rather, here
we will discuss the performance of scheduling algorithms under
assumptions of node heterogeneity, probabilistic task arrival rates,
and uncertain task completion times. By investigating well-known
algorithms, we can find a certain base level of robustness that
specialized scheduling algorithms should be able to improve
upon. This analysis, and its accompanying simulation framework,
is offered as a baseline for future evolutionary steps toward
constructing robust schedulers for more complex grids.

II. Problem Setup
For the rest of this paper, we may assume that a grid refers to a

member of the special class of grids defined above that lacks any
type of dynamic provisioning: all nodes on the grid are allocated
at startup and remain that way throughout the lifetime of the
grid. Furthermore, we may assume that all the communication
links between nodes are reliable, and that communication latency
is zero and bandwidth infinite.

Define a path to be an ordered sequence ofapplications
〈A1, . . . , AN 〉 such that the output from applicationAn−1 flows
to applicationAn. Intuitively, we can think of tasks as consisting
of several pipeline stages, where the output from one pipeline
stage flows directly into exactly one next stage, and each stage
receives input from exactly one prior stage. In practice, each
application has a different degree of parallelism, meaning that
some applications may begin executing before all the data from
the previous application is available. However, for the purposes of
our simulation, we assume that there is no such overlap: a path’s
applicationAn must finish before its next applicationAn+1 can
start. An example of a task could be the multiplication of ten
matrices, where each application multiplies the result from its
previous application by a matrix and then feeds the result to the
next application. Note that an application is the smallest unit of
work that must be run completely on one node.

Define a job or task to consist of a path, aninitial data
resource(the initial data for the first application in the path),

and acustomer. The term “customer” is used to partition the set
of jobs into separate classes which can then be used to develop a
system performance feature. The term “customer” comes from the
industry perspective of customers submitting work, but in reality
any other sort of identifier could be used, or a single customer
could be used. Also note that for convenience we often speak of
a job’s applications rather than a job’s path’s applications.

The grid’s scheduleraccepts jobs and distributes their con-
stituent applications among nodes. For our purposes, we are
assuming a central, omniscient scheduler that may schedule work
as it becomes available; in practice, such a scheduler might be
a distributed algorithm without access to all the information our
scheduler has. Investigating robust, distributed schedulers is one
area for future research.

A. Toward a Definition of Robustness

A definition of robustnessmakes sense only relative to a
perturbation parameter. In other words, a grid might be robust
against uncertainty in job completion times, or robust against un-
certain work arrival rates, meaning that variations, or uncertainty,
in these estimated times or changing work arrival rates do not
severely affect the grid’sperformance feature(thus, robustness
is necessarily grid and customer specific, because “severely” is
a relative term). The performance feature is some performance
metric on the grid as it is running. For instance, one interesting
performance feature might be the number of jobs completed per
second; another might be the amount of data processed.

1) Our Performance Feature: Latency:To evaluate robustness,
we must choose our performance feature first. We proceed to give
a formal definition of our performance feature for this simulation;
informally, our performance feature is the percentage of jobs that
“do not take too long” to finish.

Order the set of all jobs so thatjob(j) denotes thej-th job in
the ordering. Then, definestart(j, i) to be the time that thei-th
application ofjob(j) begins executing and definefinish(j, i) to
be the time that thei-th application ceases executing. We will
assume that

start(j, i) < finish(j, i)

and that
finish(j, i) ≤ start(j, i + 1)

although some realistic paths might violate the second inequality
(for instance, an application that only needs the first part of
the previous application’s data might conceivably behave in this
manner). Finally, definefinish(j, |job(j)|) to be the execution
time of the entire job, and note that it is equal to the completion
time of the last application in the job’s path. Define thelatency
L(j) of job j with its initial resourcerinit to be

L(j) = finish(j, |job(j)|)− arrival(rinit)

where arrival(rinit) denotes the time that the initial resource
is first available. LetLmax

c (j) denote the maximum acceptable
latencyL(j) of job(j) for customerc (this number, specified by
the customer, simply denotes how long the customer is willing to
wait for this job to complete. This notion of acceptable latency
is a key component of the performance feature: for modeling,
we can assume it to be a parameter, but in practice, this number



would likely be defined by the customer as part of a service level
agreement with the company providing the grid). Then, we define
Jc(t) to be the set of all jobs that arrive at timet for customer
c. We also define the helper function

1(x, y) ≡

{
1 if x > y

0 otherwise.

Now, we defineαc(t) to be thejob latency failure rate, meaning
that

αc(t) =
∑

∀j∈Jc(t)

1
(
L(j), Lmax

c (j)
)

Intuitively, αc(t) is the number of jobs, submitted by customer
c at time t, that are taking too long to finish. Theperformance
featuref(T ) of the grid over a discrete intervalT is then simply

f(T ) =
∑
∀c

∑
∀τ∈T

αc(τ)

Intuitively, the performance feature of a grid is the number of
jobs missing their acceptable latencies. Generally, we will divide
f(T ) by the number of jobs arriving during the intervalT to
obtain the performance as a more useful percentage.

2) Adequate Performance:Before we can define what we
mean for our grids to be robust against variations in a perturbation
parameter, we must first define what it means for the grid to be
performing adequately. We will then say that the grid is robust
when it still performs adequately when probabilistic variations in
the environment, expressed through the perturbation parameter,
are introduced.

Let the functionβmax
c (t) be themaximum job latency failure

rate for customerc for the jobs submitted at timet. This number,
specified by each customer, indicates the number of jobs they are
willing to accept taking longer than their maximum acceptable
latency at a given time. In practice, this will probably be specified
as a percentage, but without loss of generality we can assume it to
be an integer. This quantity necessarily varies with time because
it could be the case that a customer is willing to accept more
failures at certain times than others. Theadequate performance
metric δc(t) for customerc is then defined as

δc(t) = βmax
c (t)− αc(t)

The system isperforming adequatelywhen for every customer
c, and at every moment of timet, δc(t) is positive. Intuitively,
a system is performing adequately when, at every moment, each
customer is satisfied that not more than some given percentage
of their jobs are taking too long.

Of course, this definition of adequate performance is a boolean
condition: either the system is adequately performing or it is not.
We can use the adequate performance metricδc(t) to create other,
more nuanced definitions of adequate performance; a number of
examples come readily to mind. We could say that a system
is maximally adequately performing whenδc(t) is always the
maximum possible over anyt, or that a system is averagely
adequately performing when the average value ofδc(t) over the
system lifetime is greater than zero. Investigating applications
of the adequate performance metric and associated performance
features is one of the important directions for future work.

Note that for our simulation, we report the performance
features for grids rather than their adequate performance. We
do this because the notion of adequate performance is tied to
the customer-specified maximum job latency failure rate; the
definition of the performance feature is not. This definition of
adequate performance is offered as the basis for a definition
of adequate performance that might be used in practice as the
foundation of a service level agreement by the grid provider and
customer.

3) Our Robustness:As stated earlier, a system must be robust
relative to some perturbation parameter. There are many such
parameters, including
• node failures
• variations in job arrival rates
• variations in estimated job completion times
• time (i.e., a robust system’s performance does not vary with

time)
We have chosen variation in job completion times as our pertur-
bation parameter for this simulation. The simulation framework
itself also could support an evaluation of robustness against job
arrival rates; this is another area for future work.

B. Calculation of ETC Values

In order to evaluate the robustness of a scheduling algorithm
against variation in estimated job completion times, we must first
find a way to model these completion times. We use the method
described in [5] to model the application execution times for our
simulation. A brief synopsis of the relevant points, along with our
modifications to the method, is described in this section.

1) ETC Matrices: The term ETC value is short-hand for
“EstimatedTime to Compute value.” An ETC value represents
the amount of time that an application needs to run on a given
node in order to complete – every ETC value must be relative
to some node; there is no notion of how long an application
takes in the abstract. AnETC matrixis a matrix that has an ETC
value for every application (the rows) and node (the columns).
This definition can best be described by an example; see Table
I. Note that because of the requirement that every entry in the
matrix have a value, we are assuming that every application can
be run on every node. Extending this method to take into account
applications that may only run on certain nodes is an interesting
extension.

TABLE I

AN EXAMPLE ETC MATRIX FOR A PATH WITH 7 APPLICATIONS ON A GRID OF

5 NODES

n1 n2 n3 n4 n5

a1 21 7 4 5 9
a2 6 14 11 18 9
a3 17 13 13 15 11
a4 8 19 12 16 15
a5 13 5 9 10 7
a6 10 12 13 21 5
a7 4 15 17 11 9

2) Creating ETC Matrices: [5] gives a generous development
of the procedure we use to generate ETC matrices. In essence,
the procedure used to create an ETC matrix for a given path takes
as input parameters



Mutask measures the central tendency of the ETC values
for applications on “average” nodes
Vtask measures the variation of ETC values from Mu-
task
Vmach measures node heterogeneity

The procedure then uses the parameters to create several gamma
distributions, which are then sampled to create the values in the
matrix. The algorithm is given in Figure 1.

Fig. 1. The CVB Method for generating ETC Matrices. Summarized from [5].

Inputs: Vtask, Vmach, Mutask
Outputs: e[][] // the ETC matrix
Begin:

Let Atask = 1/(Vtask*Vtask)
Let Amach = 1/(Vmach*Vmach)
Let Btask = Mutask/Atask

For each task i:
Let q = Gamma(Atask, Btask)
Let Bmach = q/Amach
For each node j:

e[i,j] = Gamma(Amach, Bmach)

This method is capable of generating ETC matrices that have
high-task, high-machine heterogeneity; high-task, low-machine
heterogeneity; and low-task, low-machine heterogeneity. Unfor-
tunately, this method cannot generate low-task, high-machine
heterogeneity matrices. A related algorithm can generate exactly
those cases that the original algorithm cannot supply. However,
for our simulation, we will be using medium-task, medium-
machine heterogeneity matrices.

Unfortunately, this method does not generateconsistentETC
matrices. A consistent matrix has the property thatif a noden
has a lower ETC value than a nodem for any task, then the
same is true for all tasks. This is a desirable property is many
situations; as the authors of [5] discuss, an Intel Pentium III
would likely be faster than an Intel 286 for every conceivable
task. There is a method for extracting consistent matrices from
inconsistent matrices; however, because the generated matrices
tend to bepartially consistent, meaning that they have at least
one consistent sub-matrix, and because inconsistent and partially-
consistent matrices tend to occur in environments where tasks
have vastly different computational needs (i.e., some are floating-
point intensive, others need multiple threads, etc.), we feel that
using inconsistent matrices is justified.

Our extension of the method given in [5] is to simply apply
the method to generate application ETC values for paths. Thus,
a pathis an ETC matrix.

C. Scheduling

The grid scheduler assigns applications to nodes. Each node can
run one application at a time, and must run that application to
completion. (By splitting multi-cpu machines into a set of single-
cpu nodes, powerful machines may in fact run more than one
job at a time.) The scheduler maintains a queue of work for each
node, and may re-order the queue at any time. An application that

is being run but whose previous application has not finished will
wait until the previous application has finished before starting.
(This is a simplifying assumption: in reality, some applications
may begin before their previous application has finished. For
instance, a sequence of applications that are streaming data to
each other has this property.)

The scheduler is invoked whenmapping eventsoccur. During
a mapping event, the scheduler may reorder each node’s work
queue (therebymappingapplications to nodes), and assigns new
jobs that have arrived to various nodes. In general, mapping events
occur whenever

• a new job arrives
• a node enters or exits the grid
• an application finishes or is aborted
• acceptable robustness/performance changes

However, for the purposes of this simulation, mapping events are
only fired when new jobs arrive, and when applications finish.
In general, a robust scheduler will need to take robustness into
account when making mapping decisions. It is interesting to ask,
however, how well scheduling algorithms which are not aware
of robustness will perform. We have selected the following three
scheduling algorithms to study:

• FCFS: First come, first serve. Maintains a queue of applica-
tions, in the order they arrive at the grid, and assigns them to
the nodes in the order the nodes become available. When an
application finishes running, if there is another application
to run to complete that application’s associated job, then that
application will be added to the end of the incoming work
queue. Thus, this is a FCFS algorithm on applications, not
jobs.

• RR: Round-Robin. Runs all the applications from the first
job on the first node, all the applications from the second
job on the second node, and so on. It is also possible to
round robin applications, rather than paths, to nodes, but
path-based round robin was chosen for simplicity.

• MCT: Minimize Completion Time. Assigns each application
in a job to the set of nodes that will spend the least time
performing computation (i.e., the set of nodes with the
shortest latency, but not necessarily the set of nodes that
will produce the result first). This is achieved by keeping a
priority queue for each node that holds its work to be done,
ordered such that jobs that entered the grid earlier are given
higher priority. When an application finishes running, the
next application that must run to complete the job is placed
at the appropriate spot in the appropriate queue.Note that
this is the only scheduler that uses ETC values when making
scheduling decisions. Also note that a priority queue is
used because although a regular queue would also minimize
completion time, it would do so without regard to latency. In
other words, our heuristic is that to help minimize latency,
older applications should be run before new applications,
which is implemented by the priority queue. This heuristic
does not hold in all cases, but it is a good rule of thumb that
makes for a more realistic (and interesting) scheduler.

Each of these schedulers assumes perfect knowledge of the grid.
This means that, when a node completes a task, the scheduler is
notified; the scheduler itself maintains a queue of work for each



node. In practice, with a grid distributed over continents and with
large communication latencies between nodes, implementing a
centralized, omniscient scheduler might be impractical. However,
it is useful to know how an idealized scheduler performs in
simulation before attempting to implement any scheduler in
practice.

III. Simulation Description
A. Overview

Our goals for the simulation were two-fold. First, we measured
the performance features of each of the three schedulers, under a
variety of conditions, to get a general idea of how the schedulers
perform. Then, we introduced variations in the actual completion
times for tasks and measured the robustness of the MCT scheduler
to these perturbations in ETC values. (We only examined MCT
under perturbation because RR and FCFS do not use ETC values.
Although perturbing task completion times for these two sched-
ulers would likely cause variations in robustness from simulation
to simulation, the changes in robustness are uninteresting: because
ETC values are not used when making scheduling decisions, a
perturbed system is essentially equivalent to another system with
different ETC matrices; this is not the case in an MCT system.)

B. General Framework

The simulation framework, written in Java, is relatively simple.
The simulation runs a series ofticks, simulating the passage
of time. A Scheduler is notified about mapping events and
assigns applications to nodes. TheApplication s then spin
repeatedly as ticks occur, notifying the framework when they are
complete. EachJob is given an ETC matrix using the method
described above.

C. Parameters

Because it is computationally expensive to generate ETC
matrices for hundreds of jobs, the simulation framework creates
a number oftemplate jobs. Each template job has an associated
arrival rate, which determines the average number of instances
of that job that enter the simulation per tick.

In order to simulate realistic environments, we must decide on
values of Vtask, Vmach, and Mutask for each template job so
that we can generate ETC matrices by the method in Figure 1.
(Of course, “realistic” is a relative term; our grids are already
highly idealized. By realistic ETC values, we simply mean ETC
values that might conceivably be encountered in practice.) To
do this, we created the following initial values from which we
deviate randomly as we create template jobs (how we do so will
be described afterward):
• vmachinit = .4 (The central tendency of Vmach)
• vtaskinit = .4 (The central tendency of Vtask)
• mutaskinit = 20 (The central tendency of Mutask)
• vtaskvar = .2 (Variation for vtaskinit)
• mutaskvar = .1 * mutask (Variation for mutaskinit (2 ticks))
• numapps = 10 (The central tendency for number of apps per

job)
• numappsvar = 7 (Variation for number of applications per

job)

• ma = .01 (The central tendency for one job arrival per tick)
• mavar = .005 (Variation for ma (50%))

For each template job, we use the following algorithm to gener-
ate the three parameters for its ETC matrix (the Gaussian function
samples a Gaussian curve over(−1..1), and the uniform random
function samples over the interval in the call’s parameters):

vtask = nextGaussian()*vtaskvar+vtaskinit
mutask = nextGaussian()*mutaskvar+mutaskinit
numtasks = numapps +

uniformRandom(-numappsvar, numappsvar)

The acceptable latency for each template job, and thus for
each job instance of that template, is defined to be 1.5 * Mutask
* numapps. (Note that as different template jobs have different
Mutask and numapps values, not every job has the same accept-
able latency.) This choice of acceptable latency is arbitrary, as in
practice it would be specified by the customer; this value seems
like a reasonable one. Also note that by defining the acceptable
latency this way, we are essentially simulating a system with a
single customer. Finally, note that we simulating a system that has
large numbers of a few types of identical jobs. An example of
such a system might be encountered on a grid that has to process
thousands of database reads and writes.

In addition, we say that for each template job, its arrival rate
is a Poisson function with mean

mean = nextGaussian() * mavar + ma

Note that each template job has its own arrival function; as
the number of template jobs is increased, the system will become
more loaded. For all the simulation runs, we use 20 template jobs.

D. Simulation Body

The body of the simulation is as follows:

1) Create the 20 template jobs and associated ETC matrices.
2) For each tick, do the next 3 steps:

a) For each template job, query its arrival function to
determine if an instance of it should arrive this tick.

b) If a job needs to arrive, clone an instance of the job
from the template and notify the scheduler.

c) If applications have finished, notify the scheduler.

3) Finally, at the end of 10,000 ticks, count the number of jobs
that have finished within their acceptable latency, those that
have violated that latency, and those still in progress. 10,000
ticks were chosen to give the system enough time to enter
a steady-state and to simulate long running grids.

Each simulation run is given a specified number of nodes; we
vary the number of nodes while keeping the workload constant
and measure performance. An average job has around seven
applications that each take around 20 ticks; therefore a steady-
state will certainly have been reached by 10,000 ticks.

E. How Realistic is this Environment?

Given our already highly idealized conception of grids (no
node failures, no communication latency, etc), it is natural to ask
how realistic this environment is. If we look at the sample ETC
matrix in Figure 1, we see that the times are not implausible for



certain situations. Especially on grids where nodes are running
other applications concurrently (i.e. the node is not “owned;”
the grid is using “spare cycles”), large variations in ETC values
would be expected. The issue of communication link latency is
more difficult. Presumably, for certain grids and applications, we
can simulate communication link latency by adding appropriate
extra time to a job’s ETC values. For other grids, allowing each
application to pull data as soon as it is available from its prede-
cessor application could hide communication latency. Developing
an abstraction to allow use of ETC matrices with parallelizable
jobs, and with varying communication latency and bandwidth, is
an important direction for future research. However, we feel that
this environment is still worth investigating, especially given the
youth of the field.

IV. Results
A. Results for Adequate Performance

1) Preliminaries: Each run of the simulation consists of ten
runs of the simulation body above. The statistics are totaled across
the loop bodies, but the template applications are regenerated and
the simulation reset during each execution of the loop body. The
results are summarized in Tables 2-5. “OK,” “Late,” and “IP”
refer to the number of jobs that finished within their acceptable
latencies, finished outside their acceptable latencies, and did not
finish as of 10,000 ticks, respectively. Because the performance
feature is meant to capture the steady-state of the system, jobs in-
progress at the end of 10,000 ticks were ignored while calculating
performance. The performance is the percentage of jobs that
finished within their acceptable latency, as defined earlier.

2) Data: See Figures 2-4 and Tables II-IV.

TABLE II

FCFS RESULTS

Nodes OK Late IP Perf (%)
1 0 0 1820 0.000
2 0 0 1793 0.000
4 2 24 1762 0.077
8 15 93 1672 0.139
16 108 314 1415 0.256
20 271 394 1194 0.408
24 504 464 829 0.521
28 866 346 674 0.715
32 1397 6 362 0.996
64 1557 0 323 1.000

TABLE III

RR RESULTS

Nodes OK Late IP Perf (%)
1 4 15 1810 0.211
2 25 73 1755 0.255
4 72 179 1560 0.287
8 134 271 1380 0.331
16 375 432 1046 0.465
20 576 413 874 0.582
24 837 350 682 0.705
28 1029 310 574 0.768
32 1256 116 442 0.915
64 1511 0 327 1.000

TABLE IV

MCT RESULTS

Nodes OK Late IP Perf (%)
1 2 14 1739 0.125
2 26 91 1647 0.222
4 103 262 1416 0.282
8 401 405 1013 0.496
16 1471 62 351 0.960
20 1648 0 134 1.000
24 1697 0 120 1.000
28 1653 0 95 1.000
32 1756 0 107 1.000
64 1799 0 63 1.000

Fig. 2. FCFS Results Graph
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3) Discussion:When interpreting the data, it is important to
remember that achieving a steady-state has nothing to do with the
performance features. For instance, for FCFS with small number
of nodes, very few jobs are finishing; this is because the scheduler
is assigning applications to nodes in a way that precludes jobs
from finishing. This is, in fact, a steady-state, where there simply
aren’t enough nodes available to finish jobs quickly enough.

We see that both FCFS and RR have similar performance; both
algorithms required a large number of nodes before maximum
performance was achieved. MCT attained maximum performance
extremely quickly, as we would expect for an algorithm that
schedules jobs to minimize completion time.

It is interesting to note that FCFS consistently tended to
perform slightly more poorly than RR. This can be explained
by remembering that FCFS, when an application completes, will
add the next application in the associated job to the end of the
work queue, thereby requiring that application to wait for some
time before starting. In effect, FCFS adds a long delay between
applications in a job when the system is overburdened. Both
RR and FCFS achieved a steady state maximum performance
at around 30 nodes, however, because both FCFS and RR tend
to execute applications on average nodes (that is, FCFS will
assign essentially a random node to an application, and RR will
assign a different random node). Because both assignments are
random and average, we would expect maximum performance to
be achieved in roughly the same spot.



Fig. 3. RR Results Graph
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Fig. 4. MCT Results Graph
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B. Results for Robustness

1) Preliminaries: In a sense, the above analysis simply con-
firmed what we might have expected: MCT performs much better
than the other algorithms. We saw that MCT achieves perfect
adequate performance for our environment when it has around
16 nodes. It is then natural to ask what MCT’s robustness against
variations/perturbations in ETC values is. In other words, how
does MCT perform when the ETC values it is given no longer
match the actual time it takes tasks to complete?

To introduce uncertainty into ETC values, we calculate ETC
matrices as usual. Then, when a job begins running, we assign it
a different time to completion based on a parameteretcvar :

actualetc = ((1-etcvar)*(etcvar)
* nextGaussian(-oldetc, oldetc)
+ oldetc
+ (etcvar)*nextUniform(-oldetc,
oldetc) + oldetc)/2

Thus, the scheduler assigns jobs to nodes based onactual
estimatesof completion times; before, when ETC values were
the real completion times, the ETC values were perfect estimates.
Now the ETC values truly do estimate uncertain completion times.

The intuition behind the formula is straightforward: in a system
that is unperturbed (etcvar=0 ), the ETC values will be true

estimates of job completion times; therefore, the actual distribu-
tion of job completion times for that job template should be a
Gaussian centered at the ETC value. In a completely perturbed
system (etcvar=1 ), the ETC value is the center of a uniform
distribution whose average is the ETC value. For systems in
between these extremes, a weighted average of the two values
is used. We define this variation from a Gaussian distribution to
be theETC perturbation. Figures 5 and 6 demonstrate high and
low perturbation.

Other definitions of perturbation are possible. For instance,
rather than using uniform and Gaussian distributions, other dis-
tributions could be used; or, perturbation could correspond to
the correlation of ETC values and the actual samples from the
distribution. Our definition is offered as a simple, intuitive starting
point.

Fig. 5. Low Perturbation
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Fig. 6. High Perturbation
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To determine how robust MCT is against ETC variation, we
useetcvar as the perturbation parameter and examine adequate
performance as above. We varyetcvar is increments of .1 (this
increment is arbitrary; it is a compromise between too few and
too many data points). Each simulation runs for 10,000 ticks, as
before; however, these simulations are run three times and then
their results averaged. For the sake of space, all the results are
not included here.

2) Data: The data are available in Table V.



TABLE V

MCT VARIATION RESULTS

nodes 0 .2 .4 .6 .8 1 Max - Min
1 .13 .19 .12 .20 .20 .21 .15
2 .21 .24 .21 .21 .19 .20 .05
4 .21 .29 .29 .31 .30 .31 .10
8 .47 .44 .47 .46 .49 .43 .06
16 .94 .96 .96 .97 .97 .95 .04
20 1.0 1.0 1.0 1.0 1.0 1.0 0.0

3) Discussion:We see that MCT is remarkably stable against
perturbation in ETC values. In fact, all degrees of perturbation
seemed to make very little difference. However, performance
values did tend to be slightly more diffuse than in the first exper-
iment, hence the need to repeat the trials more than once. This
stability suggests a more general result: as long as ETC values
represent the average actual completion times of the associated
jobs, then the actual underlying distribution of the job completion
times does not matter to MCT. This result could potentially be
generalized to any scheduler, indicating that ETC matrices might
be useful as inputs to actual robust schedulers, rather than only
being useful as tools for a simulation. This possibility would
drastically increase the utility of using ETC values for scheduling
decisions, as it demonstrates that a concept as simple as an ETC
value could be useful in practice. A mathematical proof of this
result for MCT is one direction for future work.

Of course, caution is urged. It is impossible to tell, from this
experiment alone, whether this result is general or if it is the result
of this particular system and its associated ETC matrices. For
instance, we cannot know whether this stability will change if jobs
are inserted at a slightly faster rate; we also cannot know whether
this result holds for any scheduler besides MCT. The stability of
MCT might be related to the MCT algorithm itself rather than
ETC values being averages of actual completion times. Verifying
this result for other environments and with other schedulers is yet
another direction for future work.

In addition, even if ETC matrices do turn out to be useful in
practice, effectively calculating the ETC matrices for a given grid
with a given workload is still an open problem. Approximations
created with the described method would be an excellent first
step, but the problem is not trivial, and should prove to be an
interesting area to investigate. Scheduling methods that do not
require estimates of completion times are investigated in [2].

V. Conclusion
We have presented the results of a simulation study of a

heterogeneous computational grid. After discussing a definition
of robustness based on work completion latency and presenting a
method using ETC matrices to model heterogeneous systems, we
found that the MCT scheduling algorithm – an algorithm which
attempts to minimize the total computational time required for any
job – performed the best out of a set of well-known scheduling
algorithms. To analyze MCT further, we presented the concept of
ETC perturbation, and found that the MCT algorithm was quite
stable against variations in job completion times.

However, the most interesting result of the simulations was
not the data itself, but the intriguing possibility that ETC values
might be useful as inputs to robust schedulers. That is, it could

be the case that ETC matrices, even when they are only rough
estimates of underlying job completion times, could be treated as
true estimates without affecting robustness. Although more work
is required to generalize our result, if ETC matrices could be
used in this way, then we are one step closer to creating robust
scheduling algorithms.

VI. Related Work
The concept of computational grids, and grid computing in

general, is being studied by researchers in many fields, including
high-performance computing, networking, distributed systems,
and web services. [4] is an extensive introduction to what a com-
putational grid actually consists of, and what is required to imple-
ment it. The Globus Consortium (http://www.globus.org )
is a consortium of dozens of companies, government agencies,
and universities that is creating an open standard for grid devel-
opment using web-services as an RPC mechanism.

The modeling of computational grids with heterogeneous re-
sources is just beginning to be explored. [5], published in 2002,
can point to no directly related work in the field.

Scheduling tasks of unknown duration on distributed systems
is investigated in [2].

The evaluation of scheduling algorithms focused on efficiency
rather than robustness is explored in [1].

The construction of actual grids for industrial and scientific
work has been undertaken by many companies and scientific
groups. One particular success story is the Grid 2003 project
(http://www.ivdgl.org/grid2003 ), which has devel-
oped a grid consisting of 2000 CPUs spread across the world.

The development of robust scheduling mechanisms is being
investigated by IBM. Jay Smith (bigfun@us.ibm.com ) is one
contact point for this work.
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