
The Inadequacy of Pure Intention

Ryan Wisnesky Paul Govereau
Harvard School of Something
{ryan,govereau}@eecs

Abstract
How to reason about two things when they are only one.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms extensionality, type theory

Keywords extensionality, types, theorem proving, identity types,
equality

1. Introduction
Every type theory requires an underlying meta-theoretic notion
of definitional equality, which we denote by ≡. This equality is
used by a type-checker to decide the validity of an instance of
judgement.

Sometimes the phrase “substitute equals for equals” will implic-
itly refer to definitional equality; for instance, when definitional
equality is reflected into a type theory with a substitution judge-
ment:

SUBSTITUTION
Γ ` a Γ ` b Γ ` c a ≡ b

Γ ` c[a 7→ b]

When type theory is used as a basis for theorem proving it is de-
sirable to have another notion of equality: so called propositional
equality. Under the Curry-Howard Isomorphism, types are theo-
rems and terms are proofs. If we want to reason about equality, we
need types that represent theorems of equality, and terms that rep-
resent proofs of these theorems. We denote the type representing a
proof that a is equal to b as a = b and refer to it as propositional
equality.

These two notions of equality, definitional and propositional,
are sometimes referred to as intentional equality and extensional
equality, respectively. We will address the precise meaning and
motivation for these terms in a later section. For the moment, suffice
it to say that if two terms are definitionally equal, then from a
meta-theoretic point of view, they are exactly the same term in
all respects. On the other hand, propositionally equal terms are
meant to be equivalent with respect to all their properties; they
are extensionally equivalent in the sense of Leibniz. Of course,
this extensional equivalence crucially depends on the propositional
terms behaving within the theory in a way that is consistent with
our notions of extensionality.

[Copyright notice will appear here once ’preprint’ option is removed.]

There is a strong connection (in our minds if nowhere else) be-
tween definitional and propositional equality. In the context of the-
orem proving, definitional equalities can be thought of as theorems
that require no proof. That is, we do not have to give terms witness-
ing their truth because the underlying type theory will automati-
cally apply substitutions and conversions when building up proofs
of other facts. In light of the above, we can see that when a type
theory is used as the basis for real world applications, stronger for-
mulations of ≡ make it easier for users to work within the theory.
This is because the type-checker requires less “help” in the form of
manually constructed terms. That is, a powerful type-checker with
strong definitional equality can reduce the size of terms and typing
derivations given by the user. Unfortunately, strengthening defini-
tional equality too much can make type checking undecidable.

This paper explores the effect that a desire for extensional rea-
soning has had on the design of definitional equality for a family of
type theories used often computer science. The paper proceeds by
first defining a prototypical type theory to fix such things as syn-
tax for the purposes of presentation. This theory is then extended
to extensional type theory (ETT), which has a very strong internal
equality, but is undecidable. We then go on to describe a differ-
ent extension that is decidable but is inadequate: it fails to preserve
canonical forms and therefore fails to be a computational theory
in a sense that is useful for computer science. Finally, we describe
two different concrete implementations of theories that restore ad-
equacy. In the conclusion, we touch on a different approach, alge-
braic type theory and compare our findings.

2. A Basic Type Theory
We take as our basic type theory the Extended Calculus of Con-
structions (Luo 1989), presented as a Pure Type System (Baren-
dregt 1992). The complete set of typing rules for our basic type
system is given in Figure 1.

The typing rules for ECC are standard for a pure type system.
We draw your attention to the (CONVERSION) rule. It is from this
rule that definitional equality derives its power. As we see from
the rule, if two terms are definitionally equal, then they can be
freely substituted for one another in the types of terms. Because of
this rule, type checking depends on the decidability of definitional
equality.

We will extend this system in various way to explore definitional
and propositional equality and their relationship. As we extend the
basic system, we would like to preserve the following properties.

Decidability of type checking. We would like type checking of
our systems to be decidable. This requires that definitional equality
be decidable. In our basic type theory, we take ≡ to be syntactic
equality modulo some context-independent, strongly-normalizing
reduction strategy. A context independent property holds in all
(possibly inconsistent) well-typed contexts. Strong normalization
of the reductions implies the decidability of type checking. This is
because to check the equality of two terms we need only to normal-

CS-250 Final Project 1 2007/5/18



(ECON)

` {}

(ICON)
Γ ` A : s s ∈ S

` Γ, x : A

(TYPE)

` Typei : Typei+1

(PROP)

Γ ` Prop : Type0

(UNIV)
Γ ` Typei

Γ ` Typei+1

(VAR)
` Γ Γ(x) = A

Γ ` x : A

(PRODUCT)
Γ ` A : s Γ, x : A ` B : s′ (s, s′) ∈ R

Γ ` ∀x : A.B : s′

(APP)
Γ ` t : ∀x : A.B Γ ` u : A

Γ ` t u : B{u 7→ x}

(LAMBDA)
Γ, x : A ` t : B

Γ ` λx : A.t : ∀x : A.B

(CONVERSION)
Γ ` t : A Γ ` B : s Γ ` A ≡ B

Γ ` t : B

Figure 1. The Extended Calculus of Constructions

ize each term (guaranteed to terminate) and then compare the terms
syntactically (decidable). A common choice for the underlying re-
duction strategy is αβ-reduction.

Adequacy. A type theory is adequate if every term is definition-
ally equivalent to its canonical form. For example, in the particular
case of natural numbers, adequacy would require that every term
of type nat is either zero or the successor of a natural number. Put
another way, a theory is adequate if every syntactic member of a
type has one of that type’s constructors as its outermost functional
application; this is important because it allows a computer to auto-
matically destruct terms of every type. When adding prepositional
equality to our basic system, it is possible to break this property
(Hofmann 1995); we discuss this in more detail in Section 5.

2.1 Adding Propositional Equality
So far, our basic theory has no way to reason, within the theory,
about proofs of equality. We cannot write down a proposition cor-
responding to a = a, or any other equality in this theory. This is
because ≡ is not a predicate in the object-language; it is a meta-
theoretic notion. Thus, at this point we will extend our basic theory
with introduction rules for propositional equality; all of the systems
in this paper will share these two introduction rules:

(IDINTRO)
Γ ` t : A Γ ` u : A

Γ ` t = u : Prop

(REFL)
Γ ` t : A

Γ ` refl t : t = t

The first rule (IDINTRO) introduces the propositional equal-
ity type. Note, at this point, a propositional equality can only be
formed for two terms of the same type. The second rule (REFL)
creates a term witnessing a proof of equality, namely that every
term is propositionally equal to itself.

We have not specified any elimination rules for =, as we wish to
explore several possibilities. However, before doing so we outline
several properties that we would like our propositional equality to
satisfy.

Propositional Equality is Extensional. Our propositional equal-
ity should only equate terms that are extensionally equivalent; that
is, they are observationally equal. More formally, we only want to
prove propositional equalities of terms that cannot be distinguished
by any predicate: all observations on the terms must agree.

Propositional Equality is Substitutive. If we have a proof that
two terms contain propositionally equal sub-terms, we would like
to be able to coerce one to the other, without changing the compu-
tational meaning of the term. This will allow us to use propositional
equality in a way similar to definitional equality.

Equality Proofs are Unique. In order to ensure adequacy, we
must require that identity proofs are unique (Hofmann and Stre-
icher 1994). In fact, it is enough to say that any two proofs of the
same propositional equality are extensionally equivalent—that is,
they are themselves propositionally equivalent. Thus, we can re-
state this requirement by saying that the following type must be
inhabited:

∀p q : a = b. p = q

This uniqueness property implies proof irrelevance for propo-
sitional equality types. Furthermore, using this property and the
substitutive property above, we can freely use propositional equal-
ity proofs to rewrite terms without changing their extensional be-
haviours.

2.1.1 An instance of the basic theory: Coq without axioms
The underlying meta-theory of the theorem prover Coq is an in-
stance of our basic theory. Hence, Coq without any axioms is itself
an instance of our basic theory. In Coq, propositional equality is an
equivalence relation, named eq, defined in the theory with type:

eq : ∀T : Type, a b : T, Prop

Propositional equality is not special in any way (relative to any
other proposition). The only constructor for eq is refl equal
which represents proofs by reflexivity. Written in the syntax of Coq,
the definition of prepositional equality appears as:

Inductive eq (T:Type) (x:T) : T -> Prop :=
refl_equal : eq T x x.

Because refl equal is the only constructor for propositional
equality, definitionally equal things can be considered proposition-
ally equal. Note, however, that it is not the case that propositionally
equal things are definitionally equal.

In practice, being an equivalence relation is a strong property
to ask of a predicate, and the Coq rewriting tactics leverage this
strength very well. The extensive set of re-write tactics in Coq deal-
ing with propositional equality often give the illusion that propo-
sitional equality is definitional equality because one often wants
to prove theorems about propositional equality anyway. In general
though, Coq tactics need not be sound, only useful, because the
type checker verifies correctness of derivations.

2.2 Properties of the basic theory
Our basic theory (and indeed Coq without axioms) satisfies only
some of our desired properties. The properties satisfied are shown
in Table 1.

The theory is decidable and adequate by construction. The
propositional equality is extensional in that it is only inhabited

CS-250 Final Project 2 2007/5/18



Decidable X
Adequate X
Propositional Equality is Extensional X
Substitutive ×
Uniqueness of Identity ×

Table 1. Properties of Basic System

by roofs of reflexivity. Therefore, in consistent contexts, propo-
sitionally equal terms are also definitionally equal, and thus are
observationally equivalent. The last two properties fail to hold in
our basic system.

The failure of the Substitutive property goes right the the heart
of extensional reasoning. That is, we would like to be able to reason
about propositionally equal things using substitution, and this basic
system does not give us this power. In the remainder of this paper
we will try to restore these last two properties.

3. Mathematical Equality and Extensionality
The word extensionality arises is many different contexts and can
mean many different but potentially related things. Extensionality
is often equated with the lambda-calculus η-rule or functional ex-
tensionality because of the central place that functions occupy in
computer science and type theory. But the concept of extensional-
ity is actually broader than just the η-rule. For instance, set theory
comes with its own definition of extensionality for sets, stating that
two sets are equal when they each have the same members. Other
mathematical objects may have many different, potentially conflict-
ing notions of extensionality. In fact, broadly speaking, you could
define extensional reasoning to be “that which mathematicians ac-
tually do.” This section informally describes and justifies the fuzzy
concept of extensional reasoning.

3.1 What does it mean to do mathematics
From a computer science perspective, mathematicians employ a
specific methodology: to describe a class of mathematical objects,
they first define a set of syntactic terms to serve as carriers for
the platonic objects in question, and then form the quotient of that
class of terms by some equivalence relation. The particular relation
used captures some semantic notion of what it means for the objects
denoted by the terms to be equal in the sense that we care about.
Having done this, reasoning then proceeds as though the carriers
and the equivalence classes of carriers are actually the same. In
effect, reasoning is done on representatives from each equivalence
class.

From a more philosophical perspective, this kind of mathemat-
ical reasoning is justified because it employs Leibniz’s definition
of equality. Leibniz’s equality states that one is justified in treating
objects identically when there is no test that can distinguish them.
By defining a particular equivalence relation when we formed our
quotient, we are in effect giving up the ability to reason about prop-
erties we think are irrelevant, and we gain a simplifying assumption
about our subject.

3.2 An example of extensionality in mathematics
It is natural to give an example of extensional reasoning in mathe-
matics using lambda calculus, but this kind of reasoning is broadly
applicable to other areas of mathematics. So, without further ado,
let us reason extensionally about lambda terms.

Many mathematical treatments of lambda-calculus are moti-
vated by the desire to reason about operational reduction behavior
of lambda terms, and as such, these treatments will often equate
α-equivalent terms. On a blackboard in front of a class, this might

be done by writing an axiom:

∀t t′, α(t, t′) =⇒ t = t′

where α is a predicate capturing the notion of α-equivalence. The
development then proceeds without mention of α. This axiom is
true because we are only interested in operational behavior, and no
operational test can distinguish α-equivalence.

As another example, suppose one is reasoning about simply-
typed lambda calculus and lambda terms are considered as set-
theoretic functions. In this setting, the pertinent information about
a lambda term is captured entirely by the function/lambda term’s
map, i.e. the set

{(a, b) | f a = b} .

To capture this notion, one may form a quotient with the η-
equivalence relation. As an axiom, this reads:

∀f g x, f x = g x =⇒ f = g .

Of course, there are other possible extensionality principles for
functions; the typical example is when the properties in question
relate to the running time of functions. If we are interested in
these properties, then of course the extensionality axiom above is
patently false.

3.2.1 A Philosophical Aside
The use of axioms in this way is said to capture extensional reason-
ing because the axioms assert that objects are equal based on their
“extent”, or on properties each object possesses, rather than on the
syntactic name or description of the object. Intensional properties,
on the other hand, are ascribed to an object simply by virtue of how
the object is named.

The α-equivalence of two terms is in fact decidable based solely
on the syntax of a term, whereas the η-equivalence of two terms
is not. As such, η-equivalence feels more extensional than alpha-
equivalence. In fact, one could imagine creating a type theory with
a judgement scheme capturing alpha-equivalence of terms. Hence,
α-equivalence could be called intensional. However, there is no
complete and decidable theory with a judgement scheme for η-
equivalence, and so η is truly extensional. We would expect this
because the notion of operational reduction is an external concept
that we apply to lambda terms.

Broadly speaking, extensional equality can be thought of as de-
notational equality, and definitional equality as syntactic equality.
As one often has a denotation in mind when using a formal system,
it is almost always stronger to reason using an extensional notion
of equality.

3.3 Extensionality though axioms or judgements
To proceed further we will fix our attention to the function exten-
sionality, as one specific instance of extensionality. This is simply
because most work on extensionality is done in the context of func-
tional extensionality.

What we would like our theory to have is an inhabitant of the
function extensionality type; our basic theory does not have this.
We can get this inhabitant by either having a set of judgements that
imply that this type is inhabited (the ETT approach), or we may
assume the existence of this inhabitant by using an axiom (the ITTe
approach).

4. ETT
Extensional type theory takes a judgemental approach. It adds an
equality reflection judgement:

CS-250 Final Project 3 2007/5/18



(EQUALITY REFLECTION)
Γ ` p : a = b

Γ ` a ≡ b

This judgement implies that propositional and definitional
equality are the same notion: they may be freely converted to one
another by this judgement and by the refl constructor.

4.0.1 Undecidability
While this approach is quite powerful, it has the unfortunate draw-
back of typically making the entire type theory undecidable. A the-
ory with this judgement is called an extensional type theory.

One reason that this judgement makes type-checking undecid-
able is because it requires the type checker to invent the proof p
used in the premises of the equality reflection judgement. This is,
of course, undecidable in general.

4.0.2 Failure of Strong Normalization
The equality reflection judgement also breaks strong normalization
in inconsistent contexts. (It maintains strong normalization for con-
sistent contexts). For example, consider the following example:

p: nat->nat = nat
(fun x:nat->nat => x x): (nat->nat)->nat
----------------------------------
(fun x:A => x x)
(fun x:A => x x) ?: A

Here, we can use equality reflection to obtain the equivalent
context and goal:

p: nat->nat = nat
(fun x:nat->nat => x x): (nat->nat)->nat
(fun x:nat->nat => x x): nat->nat
----------------------------------
(fun x:nat->nat => x x)
(fun x:nat->nat => x x)
: nat (by application rule)

The extra type for the anonymous function is obtained by equal-
ity reflection on p, which has the effect of rendering the application
of one function to another well-typed. This term will loop forever
when beta-reduced. Therefore to halt, the type-checker would have
to test for non-termination, and thus checking is undecidable.

The failure of strong normalization in inconsistent contexts has
interesting ramification for the proof theory of extensional type
theory. In an extensional type theory, it is inappropriate to view
a term as a proof, because the term might not normalize. Instead,
one must view the entire typing derivation as the proof, and even
then this proof is contingent on the consistency of the axioms in-
volved. Thus, a term isn’t a true proof object but is rather a proof
object for the partial correctness of the term it types. In spite of non-
normalization, however, the theory, interpreted as a logic, is consis-
tent. A term of type False can only occur inside of an inconsistent
contexts: an analytic proof of False in a consistent context requires
an introduction rule for False. The other two methods for obtain-
ing False are to pull it from the context or to use a non-terminating
term; both of these methods require inconsistency to begin with. It
is interesting to note that this treatment of proof is in contradiction
to the Curry-Howard isomorphism.

In summary, Extensional Type Theory (ETT) has all of the de-
sirable reasoning properties that we desire, but the resulting theory
is not decidable. Decidability is such an important property for the
applications found in computer science, that we are compelled to
abandon ETT to develop an alternative theory.

Decidable ×
Adequate X
Propositional Equality is Extensional X
Substitutive X
Uniqueness of Identity X

Table 2. Properties of Extensional Type Theory

5. ITTe
Extensional type theory has all of the reasoning principles that
we desire, but type checking is undecidable. This undecidability
comes directly from the (EQUALITY REFLECTION) rule: it is too
powerful. The (EQUALITY REFLECTION) rule requires the type
checker to find proofs of propositions in order to decide definitional
equality. This “finding of proofs” is not, in general, a solvable
problem, and thus the whole theory becomes untenable.

In this section we will develop a decidable type theory with
the properties we desire by adding more precise judgments. The
resulting system will have all of the properties that we desire,
including decidability. To begin, we simply add judgments for
functional extensionality and uniqueness of identity:

(EXT)
Γ ` u, v : ∀x : A.B Γ, x : A ` p : u x = v x

Γ ` Ext(u, v, p) : u = v

(UNIQUE)
Γ ` u, v : σ Γ ` p : u = v

Γ ` p = refl u : u = v

The first rule, (EXT), give us additional reasoning power. The
(UNIQUE) rule is required for adequacy. Our basic system does
not have an elimination rule for propositional equality. However,
when we add one we must be sure that it cannot be used to produce
irreducible terms that are not canonical: i.e. we must ensure the
theory remains adequate. The easiest way to do this is to simply
require that all proofs of the same propositional equality are in
fact definitionally equivalent. This is precisely what the (UNIQUE)
judgement does for us.

In addition to ensuring adequacy, the (UNIQUE) rule allows
us to give a simpler elimination rule for propositional equality
(Hofmann 1993). This simpler elimination rule will give us a way
to use propositional equality, and directly ensure the substitutive
property.

5.1 Elimination by subst
When looking for an eliminator for propositional equality, we
would like to get as much expressive power as possible without
sacrificing decidability. In the limit, we would like to have as much
expressive power as ETT. Using ETT as a guide, we can derive an
elimination rule for propositional equality1

In essence, we need to find a decidable equivalent for the use
of (EQUALITY REFLECTION) in our proof trees. That is, we must
find a replacement for:

Γ ` t : U

Γ ` p : U = T

Γ ` U ≡ T

Γ ` t : T
.

The difficulty with this proof fragment is that the type checker
must invent the proof term p during type checking. Therefore, one
solution is to simply require that the programmer supply this proof.

1 This elimination rule is normally derived from the J operator (Altenkirch
1999), this presentation hopes to simplify the issues involved.

CS-250 Final Project 4 2007/5/18



To this effect, we introduce a new term subst with the following
type:

subst : ∀a b : T. (a = b) → τ(a) → τ(b)

The subst term carries both a term τ(a) and a proof (a = b) of
propositional equality. Note, that the result type of subst gives us
the substitution within τ . Using subst, we can replace the above
proof fragment with the following, decidable fragment:

(SUBST)
Γ ` t : U Γ ` p : U = T

Γ ` subst(p, t) : T

Since the proof term p is provided by the programmer as part of the
term, the type checker does not need to guess this proof term.

We call the our base system extended with (EXT), (UNIQUE),
and (SUBST) extended intentional type theory, or ITTe. This theory
has all of the properties that we desire.

Decidable X
Adequate X
Propositional Equality is Extensional X
Substitutive X
Uniqueness of Identity X

Table 3. Properties of Extended Intentional Type Theory

Note that without unqiueness of identity, we would not have
adequacy.

Even though we have the properties we want, we still do not
know how expressive the system is. It is possible to give an al-
gorithm which translates terms in ETT into terms in ITTe (Oury
2005); of course, this algorithm is not complete, because non-
normalizing terms from ETT have no equivalents in ITTe. In spite
of this, however, the same types are inhabited in both ITTe and
ETT. This does beg the question: which ETT terms can be encoded
in ITTe? We will explore this question in the next section.

5.2 Relation to ETT
Here we state that precise relationship between ITTe and ETT
(the following is adapted from Hofmann (1996, 1995)). In order
to distinguish judgements of ITTe from ETT, we will write ETT
judgments with a subscript (`E).

In constructing ITTe, we added the terms subst and Ext. In
order to compare this system to ETT, we define “strip” (written
as btc) as a way of removing these extra terms. The complete
definition of strip is given below:

bExt(u, v, p)c = p

bsubst(p, t)c = t

The first property that we would like to establish is that ITTe is
sound with respect to ETT.

Theorem 5.1 (Soundness)

Γ ` J =⇒ bΓc `E bJc

In this context, soundness means that any well-typed term of ITTe,
if stripped, is a well-typed term of ETT. This soundness theorem is
proved by a straight-forward induction on derivations.

The expressiveness of ITTe with respect to ETT is established
by the following two theorems.

Theorem 5.2 (Conservative Types)

bΓc `E bσc =⇒ Γ ` σ

Theorem 5.3 (Conservative Propositional Equality)

bΓc `E bMc = bNc =⇒ Γ ` σM = N

The first theorem states that for any well-formed type in ETT,
there exists a type, potentially with some Ext and subst terms
inserted, that is well formed in ITTe. The second theorem is much
more interesting. The second theorem establishes that and proof of
propositional equality in ETT has a corresponding proof in ITTe
when the types make sense. This last result gives us a good deal
of confidence that our system is capable of expressing all of the
propositional equalities that we many want.

5.2.1 A Surjective Embedding
Notice, that not every well-typed term in ETT has a corresponding
stripped version in ITTe. That is, the embedding of ETT into ITTe
is not surjective. For example, the following judgement in ETT:

x : nat `E x = Sx(0)

One possible embedding of this into ITTe is:

x : nat ` subst(.., x) = Sx(0)

However, this is not provable in ITTe: currently we have no way to
reason about the propositional equality of subst terms. Hofmann
(1995) proposed a solution which involves adding an reasoning
principle. The new reasoning principle would provide a term in
ITTe which is definitionally equal to Sx(0) in ITTe, but when
stripped would be definitionally equal to x in ETT.

Adding these new reasoning principles, at all of the necessary
types, would allow us to construct, for every judgment in ETT,
a corresponding judgment in ITTe. We would then have a fully
surjective embedding of ETT into ITTe. We do not go further
into the details here, we only mention this because is bears some
similarity to the techniques used in Observational Type Theory
(Altenkirch and McBride 2006).

6. Alternative Approaches
In this presentation, we have axiomatized uniqueness. There are a
number of axioms which are equivalent to uniqueness of identity.
To mention a few:

• Invariance by Substitution of Reflexive Equality Proofs.
• Injectivity of Dependent Equality
• Uniqueness of Identity Proofs
• Uniqueness of Reflexive Identity Proofs
• Streicher’s Axiom K

Any of the above axioms would suffice. Indeed, any one of these
axioms is sufficient to prove all of the others.

Rather that introducing any of the axioms above, we could
have taken another route, and formalized heterogeneous equality
(McBride 2000), also know as “John Major” equality. The hetero-
geneous equality approach is taken in Observational Type Theory
(Altenkirch and McBride 2006). In addition, OTT introduces a con-
structor for equality at each type in the system. This gives them a
more expressive type theory, but makes establishing proof irrele-
vance challenging. At the time of this writing, OTT looks like a
very promising alternative, but the meta-theory has not been fully
worked out.

In this paper we have focused on type theoretic solutions. How-
ever, there are other approaches that can be taken. From a practi-
cal point of view, the problem with ITT is that we often encounter
terms that are equivalent, but not definitionally equal. For example,

CS-250 Final Project 5 2007/5/18



in Coq n + 0 is definitionally equal to n, but 0 + n is not. The pro-
grammer (prover) can perform a sequence of rewritings to trans-
form 0 + n into n + 0, and then definitional equality takes over.
Hence, we could consider adding a set of confluent term rewrit-
ing equations to the system which automates these kinds of tasks.
This generally goes by the name of “Algebraic Type Theory”. The
primary difficulty with Algebraic Type Theories is that it is easy
to accidentally destroy the meaning of your types by introducing
rewritings.

7. Conclusion
In this paper, we have begun the process of outlining the difficulties
of propositional equality and some of the current solutions. In our
presentation we have focused on five properties that motivate the
solutions discussed. These are certainly not the only properties of
interest, or the solutions possible. However, we hoped to bring a
narrative cohesion to an otherwise complex and varying field of
study.

References
Thorsten Altenkirch. Extensional equality in intensional type the-

ory. In LICS ’99: Proceedings of the 14th Annual IEEE Sympo-
sium on Logic in Computer Science, page 412, Washington, DC,
USA, 1999. IEEE Computer Society. ISBN 0-7695-0158-3.

Thorsten Altenkirch and Conor McBride. Towards observational
type theory. University of Nottingham, 2006.

Henk Barendregt. Lambda calculi with types. In Handbook of
Logic in Computer Science, Volumes 1 (Background: Mathemat-
ical Structures) and 2 (Background: Computational Structures),
Abramsky & Gabbay & Maibaum (Eds.), Clarendon, volume 2.
1992.

Martin Hofmann. Elimination of extensionality in martin-löf type
theory. In Henk Barendregt and Tobias Nipkow, editors, TYPES,
volume 806 of Lecture Notes in Computer Science, pages 166–
190. Springer, 1993. ISBN 3-540-58085-9.

Martin Hofmann. Conservativity of equality reflection over inten-
sional type theory. In TYPES ’95: Selected papers from the In-
ternational Workshop on Types for Proofs and Programs, pages
153–164, London, UK, 1996. Springer-Verlag. ISBN 3-540-
61780-9.

Martin Hofmann. Extensional concepts in intensional type theory.
PhD thesis, University of Edinburgh, 1995.

Martin Hofmann and Thomas Streicher. The groupoid model
refutes uniqueness of identity proofs. In Samson Abramsky,
editor, Proceedings of the Ninth Annual IEEE Symp. on Logic in
Computer Science, LICS 1994, pages 208–212. IEEE Computer
Society Press, July 1994.

Zhaohui Luo. ECC, an extended calculus of constructions. In
Proceedings 4th Annual IEEE Symp. on Logic in Computer
Science, LICS’89, Pacific Grove, CA, USA, 5–8 June 1989, pages
386–395. IEEE Computer Society Press, Los Alamitos, CA,
1989.

Zhaohui Luo. An Extended Calculus of Constructions.
PhD thesis, University of Edinburgh, 1990. URL
citeseer.ist.psu.edu/luo90extended.html.

Conor McBride. Dependently Typed Functional Programs and
Their Proofs. PhD thesis, 2000.

Nicolas Oury. Extensionality in the calculus of constructions. In
TPHOLs, pages 278–293, 2005.

Frank Pfenning. Intensionality, extensionality, and proof irrele-
vance in modal type theory. In LICS ’01: Proceedings of the
16th Annual IEEE Symposium on Logic in Computer Science,
page 221, Washington, DC, USA, 2001. IEEE Computer Soci-
ety.

CS-250 Final Project 6 2007/5/18


