Using Dependent Types and Tactics to Enable
Semantic Optimization of Language-Integrated Queries

Gregory Malecha, gmalecha®eng.ucsd.edu
Ryan Wisnesky, wisnesky@math.mit.edu

DBPL
October 27, 2015

Outline

» Goal: build a query optimizer in Coq
> not to prove it correct, but

> to optimize monad comprehensions

> toward dependently-typed LINQ!

» | will describe:
» the basics of conjunctive query optimization
» how to represent data integrity constraints in Coq
» how to build a query optimizer as a Coq tactic

» Who cares?
» Coq users can use our tactic to optimize monad comprehensions in a
provably correct way.
» Our work gives a design pattern for optimizing Coq code using tactics.

» Talk goals:
» Introduce semantic query optimization to functional programmers
> Introduce dependently-typed programming to database specialists
» The details of the Coq tactic are too difficult to convey in a talk

)

21

Overview

» Part 1:
» Given a relational conjunctive query)
» and a set of constraints C' of the form VZ.¢(Z) — 37.4(&, ¥)
» we can compute a unique minimal query Q' such that C' Q =~ Q'
» or diverge

» Part 2:
» Given a commutative, idempotent monad with zero in Coq
» and a Coq monad comprehension)
» and a set of Coq proof objects C
» our Coq tactic (semi) computes Q" and a proof that C + Q =~ @’

3/21

Semantic (constraint-aware) optimization

» Return tuples (d,a) where a acted in a movie directed by d.

for (my in Movies) (mg in Mowies)
where mj.title = mo.title

return (m;.director, mo.actor)

» Under functional dependency title — director is equivalent to:

for (m in Mouwies)

return (m.director, m.actor)

Embedded Dependencies (EDs)

» Let P and B be conjunctions of equalities (e.g., 1 = x2) and
memberships (e.g, R(z1,x2)):

forall (z in X)
where P(@)

exists (y in Y)

where B(7,7)
» Functional dependency title — director expressed as:

forall (z in Movies) (y in Movies)
where z.title = y.title,
exists

where x.director = y.director

The front and back of an ED

C := forall (z in X)
where P(7T)

exists (y in Y)

where B(7,7)

front(C) := for (r in X)
where P(@)
return ()

back(C) := for (z in X) (y in Y)
where P(Z) A B(Z,7)
return (7))

VI, IT=C iff front(C)(I) = back(C)(I)

Homomorphisms of queries

» A homomorphism h : ()1 — ()2 between queries:

_ > _ >
for (v1 in V1) for (ve in V3)
where P;(77) —p where Pa(73)

return R;(77) return R (73)

» is a substitution U7 — 73 such that

> (h(’l)l) in Vlj e (’UQ in ‘/25
> Po(v3) = Pr(h(
> Py = Ry(h(77)) = Ra(03)

» Q1 — Qo implies VI, Q2(I) < Q1(1)

The Chase
C := forall (z in X) Q = for (vinV

where P(7) where O(7)
exists (y inY) return R(7)

where B(@,7)

» When h : front(C) — Q,

step(C,Q) = for (vinV) (yinY)

where O(7) A B(m;@))
return R(7)

CF Q = step(C,Q)

» The chase is to step until a fixed point is reached.

CHQ=Qy if chase(C,Q1) < chase(C,Q2)

21

Tableaux Minimization

» Given a query @ and set of EDs C
» we first chase @ with C to obtain U, a so-called universal plan

» then we search for sub-queries of U, chasing each in turn with C' to
check for equivalence with U.

21

Q1 := for (m; in Movies) (mg in Movies)
where m;.title = mo.title

return (m;.director, mg.actor)

C := forall (x in Movies) (y in Movies)
where z.title = y.title
exists

where x.director = y.director

chase(C,Q1) = for (my in Mowvies) (ma in Movies)
where mj.title = mo.title A
my.director = my.director

return (m;.director, mg.actor)

min(chase(C,Q1)) = for (mg in Movies)

return (ms.director, my.actor) oo

Part 2

» Part 1:
» Given a relational conjunctive query)
» and a set of constraints C' of the form VZ.¢(Z) — 37.4(&, ¥)
» we can compute a unique minimal query Q' such that C' Q =~ Q'
» or diverge

» Part 2:
» Given a commutative, idempotent monad with zero in Coq
» and a Coq monad comprehension)
» and a set of Coq proof objects C
» our Coq tactic (semi) computes Q" and a proof that C + Q =~ @’

11/21

Coq

» Coq is a proof assistant based on functional programming with
dependent types:

T
Inductive List (A : Type) : Nat — Type :=
| nil: List AOQ
| cons: V(n: Nat), A — List An — List A (n + 1).

Definition append Anm :List An — List Am — List A (n + m)

L |

» Coq programs can be built interactively using a scripting language:

TTheorem append_unit : VAnml, append Anmnil 1 =1.
Proof.
intros; induction n;
[reflexivity | simpl in *; rewrite H; trivial |].
Qed.

L I}
» Coq is an intriguing ambient language for querying:

T

Definition f (C: ED) I (pf: holds I C) :=...

L

12 /21

Queries in Coq

L

T
Definition Movie : Type := (string x string x string).
Definition Movies : set Movie := ...

Definition title x := fst x. (* x.title *)
Definition director x := fst (snd x). (* x.director *)
Definition actor x := snd (snd x). (* x.actor *)

Definition q: set (string x string) :=
ml <« Movies ; m2 «— Movies ;
guard (ml.title = m2.title) ;
return (ml.director, m2.actor).

Definition optimized_query:

{Qopt : set (string x string) | title_director_ed — Qup = q}.

optimize solver.

Eval compute in (projl optimized_query).
(¥ = x «— Movies ; return (x.director, x.actor)
* : set (string x string) *)

13/21

Idempotent, Commutative Monads

Class DataModel (M : Type — Type) : Type :=
{Mret : V{T}, T—> MT
; Mzero :V {T}, MT
: Mbind :V {TU}, MT - (T —» MU) > MU
(* plus many axioms, including
for (x in X)(y in Y) = for (y in Y)(x in X)
for (x in X)(x in X) = for (x in X)
*)
1.

L |

» Example: Finite sets
» Mret v = {v}
» Mzero = {}

» Mbind mk = |J,,, k(z). Write x <~ m; k for Mbind m (fun x = k)

TEM

14 /21

Queries and EDs in Coq

T
(* Queries *)

Definition query {S T: Type}
(P: MS)(C: S—> bool) (E: S— T): MT :=
Mbind P (fun x = Mguard (C x) (Mret (E x))).

(* Embedded Dependencies)
Definition embedded_dependency {S S': Type}
(F: MS) (GE: S — bool) (B: MS') (Gb: S — S — bool)
:= Meq (query F Gf (fun x = x))
(query (Mprod F B)
(fun ab = Gf (fst ab) && Gb (fst ab) (snd ab))
(fun x = fst x)).

15/21

Tactic basics

» A tactic can examine this Coq code:

Definition q_LOR : set (string x string) :=
ml <« Movies ;
guard (m1.title 7= ""Lord of the Rings'') ;
m2 «— Movies ;
guard (ml.title 7= m2.title) ;

return (ml.director, m2.actor).
L 1

» and normalize it into:

Definition q_LOR' : set (string x string) :=
ml «— Movies ;
m2 «— Movies ;
guard (ml.title 7= “Lord of the Rings' && m1l.title ?= m2.title) ;

return (ml.director, m2.actor).
L 1

» and emit an equality proof using the monad laws.

16 /21

Tactics, continued

» A Coq proof goal is a sequent, I' 7 : ¢, where I' is a context of Coq
terms and ¢ is a Coq type.

» A tactic can transform a proof goal into new goals:
TR?2 it — {2t T 2ty
» or solve a proof goal by building a term from the context:
'e+?2:t—Tte:t

» Our proof goals are queries and semantics-preservation proofs, and our
transformations are re-write rules.

17/21

Tactics, continued

» Coq's tactics are designed for general-purpose theorem proving.
» So, the challenge is to map query optimization onto these tactics.

» This requires many structural lemmas, for example
(Vz,Q(z) = Q'(x)) — for (z in X),Q(z) = for (z in X),Q’(z)

» and a tactic to exhaustively search for homomorphisms
» and tactics to match sub-terms of queries

» The payoff is a tactic that operates directly on Coq programs, rather
than on a type of syntax for queries.

18/21

Analysis of the tactic-based approach

» Benefits:
» Supports nested relations simply by proving new lemmas. (Contrast to
deep-embedding approach)
» Supports arbitrary Coq computation in where clauses with no effort.

» Re-use of existing Coq infrastructure - higher-order unification, and
backtracking search are built-in.

» Drawbacks:

» Tactics are completely untyped, and so are error-prone to develop.
> Many similar lemmas had to be proved.

» Speed - finding homomorphisms is NP but Ly.. is nonetheless slow.

19/21

Conclusion

» Part 1:
» Given a relational conjunctive query
» and a set of constraints C' of the form VZ.¢(Z) — 37.4(Z, ¥)
» we can compute a unique minimal query Q" such that C' — Q =~ @’
» or diverge

» Part 2:
» Given a commutative, idempotent monad with zero in Coq
» and a Coq monad comprehension)
» and a set of Coq proof objects C'
» our Coq tactic (semi) computes Q" and a proof that C' - Q = @’

» Take-away:
» Coq users can use our tactic to optimize monad comprehensions in a
provably correct way.
» Our work gives a design pattern for optimizing Coq code using tactics.

» Toward dependently-typed LINQ!

20/21

Thanks to

» ONR grant N000141310260

» AFOSR grant FA9550-14-1-0031

» Lucian Popa

21/21

