
Using Dependent Types and Tactics to Enable
Semantic Optimization of Language-Integrated Queries

Gregory Malecha
University of California, San Diego

gmalecha@eng.ucsd.edu

Ryan Wisnesky ∗

Massachusetts Institute of Technology
wisnesky@math.mit.edu

Abstract
Semantic optimization — the use of data integrity constraints to op-
timize relational queries — has been well studied but, owing to lim-
itations in how SQL handles constraints, has not often been applied
by mainstream RDBMSs. In a language-integrated query setting,
however, the query provider is free to rewrite queries before they
are executed on an RDBMS. We show, using Coq as our ambient
language, how to use dependent types to represent a well known
class of constraints — embedded, implicational dependencies —
and how Coq tactics can be used to implement a particular kind
of semantic optimization: tableaux minimization, which minimizes
the number of joins required by a query.

1. Introduction
Semantic optimization [1, 8, 19] is the use of data integrity con-
straints such as keys, functional dependencies, inclusions, and join
decompositions to optimize relational queries. For example [1],
consider the following contrived query over a relation (set of
records) Movies with fields title, director, and actor:

for (m1 inMovies) (m2 inMovies)

wherem1.title = m2.title

return (m1.director,m2.actor)

This query returns (a set of) tuples (d, a) where a acted in a movie
directed by d. A naı̈ve implementation of this query will require a
join. However, when Movies satisfies the functional dependency
title → director (meaning that if (director : d, title : t, actor : a)
and (director : d′, title : t′, actor : a′) are Movies records such
that t = t′, then d = d′), this query is equivalent to:

for (m inMovies)

return (m.director,m.actor)

which can be evaluated without a join. (Note that if Movies did
not satisfy the functional dependency, the equivalence would not
necessarily hold.)

∗Work supported by ONR grant N000141310260 and AFOSR grant
FA9550-14-1-0031

[To appear in DBPL 2015.]

Of course, knowing that the functional dependency holds, a
programmer might simply write the optimized query to begin with.
However, constraints are not always known at compile time, such as
when relations are indexed dynamically. In addition, not all queries
are written by programmers. For example, information-integration
systems such as Clio [14] automatically generate large numbers of
un-optimized queries.

Although certain RDBMS’s such as DB2 can perform limited
amounts of semantic optimization [15], RDBMS’s are fundamen-
tally limited by the expressiveness of SQL as a constraint spec-
ification language. For example, SQL includes keys and foreign
keys but constraints such as the functional dependency above are
not directly expressible in SQL. (Technically, functional dependen-
cies can be encoded as CHECK constraints, but even CHECK con-
straints cannot capture multi-table constraints such as join decom-
positions.) In relational database theory, a fragment of first-order
logic, embedded, implicational dependencies (EDs) are used to
capture almost all constraints used in practice, including keys, for-
eign keys, inclusions, functional dependencies, and join decompo-
sitions. A large body of literature has been developed to facilitate
reasoning about queries in the presence of EDs [19].

Contributions and Outline In this paper we demonstrate that
dependently-typed language-integrated query systems (LINQs [13])
that compile to SQL can expose data integrity constraints, in the
guise of EDs, as first-class objects to their users. This feature al-
lows them to apply sophisticated semantic optimization techniques
before translating user queries into SQL. In particular, we show,
using Coq [5] as our ambient language, how to use dependent
equality types to represent EDs, and how to use Coq tactics to
implement a particular kind of semantic optimization: tableaux
minimization, which minimizes the number of joins required by
a query. This paper is divided into two parts: the first part is a
tutorial on tableaux minimization, and the second part is a Coq
rendering of the first part. The Coq development is available at
github.com/gmalecha/semantic-query.

Related Work Most theoretical work on language-integrated
query systems is done in a simply-typed setting [21]. In practice,
however, sophisticated type systems are often used to to facilitate
embedding the query sublanguage into a general purpose program-
ming language. For example, labeled row types [11] can be used
to embed DBMS records into a programming language, and the
Opaleye library for Haskell uses the Arrow type-class to statically
enforce the well-formedness of its SQL output [10]. Rarer still are
dependently-typed embedded query languages. Although Coq has
been used to prove the correctness of certain database-related lan-
guages, data structures, and algorithms [4, 18], none of this work is
concerned with using Coq directly as an embedded query language
as we are doing in this paper (i.e., these works use deep embeddings
of query languages, while we use a shallow embedding).

1 2015/8/4

2. Queries
In this paper we will focus on relational conjunctive queries [1],
and for the first part of this paper the specifics of our query lan-
guage will not matter. We will write (l1 : e1, . . . , lN : eN) to indi-
cate a record with unique labels l1, . . . lN formed from expressions
e1, . . . , eN , where an expression has the form v.l for a variable
v and label l. We will abbreviate (potentially 0-length) vectors of
variables x1, ..., xN as −→x . We will write P (−→x) to indicate a con-
junction of equalities over expressions over variables −→x . Assumed
base relations (often called roots) will be written in capital letters,
such as

−→
X . A tableau has the form:

for
−−−−−→
(x inX)

where P (−→x)

The
−−−−−→
(x inX) are called generators. A (conjunctive) query is a pair

of a tableau and a record (“return clause”) R(−→x):

for
−−−−−→
(x inX)

where P (−→x)

return R(−→x)

Extensions We will only consider relational conjunctive queries
in this paper, but many extensions to conjunctive queries have been
studied in the literature [1]. Three extensions are particularly im-
portant, because many results about semantic optimization, includ-
ing tableaux minimization, hold for these extensions [19]:

• It is possible to allow generators to be dependent, thereby al-
lowing, for example, nested relations [19]:

for (g in Groups) (p in g) . . .

• It is possible to interpret queries in arbitrary monads with ze-
roes, for example, the list monad or the bag monad. However,
the optimization procedure described in this paper is only sound
for monads that are both commutative and idempotent [19]:

for (x inX)(y in Y) ∼= for (y in Y)(x inX)

for (x inX) ∼= for (x inX)(x inX)

Such monads arise, for example, as power monads on topoi [3].
• It is also possible to interpret queries in monad algebras [16].

For example, it is possible to write a query to find the largest
element of a set:

for (x in SetOfInts) max x

3. Embedded Dependencies
An embedded dependency (ED) [1] is a pair of tableaux, where one
tableau is universally quantified, and the other tableau is existen-
tially quantified:

C := forall
−−−−−→
(x inX)

where P (−→x)

exists
−−−−−→
(y in Y)

where B(−→x ,−→y)
Example The functional dependency from our example from the
introduction is written (the exists clause is empty):

forall (x inMovies) (y inMovies)

where x.title = y.title,

exists

where x.director = y.director

An ED C gives rise to two conjunctive queries, the front and back
of C. We write L(−→x) to indicate a record capturing the variables−→x ; e.g., (x1 : x1, . . . , xN : xN).

front(C) := for
−−−−−→
(x inX)

where P (−→x)

return L(−→x)

back(C) := for
−−−−−→
(x inX)

−−−−−→
(y in Y)

where P (−→x) ∧B(−→x ,−→y)
return L(−→x)

It is easy to establish [19] that

∀I, I |= C iff front(C)(I) = back(C)(I)

In the above, I |= C should be read “constraintC holds on instance
I .” In the second half of this paper, we will use a dependent equality
type corresponding to the above equation as a type of proofs that
an ED holds in a particular instance.

Notation When two queries Q1 and Q2 give the same result
on every instance, we write Q1

∼= Q2. When Q1 and Q2 give the
same result on every instance satisfying some set of EDs C, we
write C ` Q1

∼= Q2.

4. Homomorphisms
A homomorphism h : Q1 → Q2 between queries:

for
−−−−−−→
(v1 in V1)

where P1(
−→v1)

return R1(
−→v1)

→h

for
−−−−−−→
(v2 in V2)

where P2(
−→v2)

return R2(
−→v2)

is a substitution mapping the for -bound variables of Q1 (namely,−→v1) to the for -bound variables of Q2 (namely, −→v2) that preserves
the structure of Q1 in the sense that:

• (h(v1i) in V1i) ∈
−−−−−−→
(v2 in V2) – the image of each generator in

Q1 is found in the generators of Q2.
• P2(

−→v2) ` P1(h(
−→v1)) – the image of the where clause of Q1 is

entailed by the where clause of Q2.
• P2 ` R1(h(

−→v1)) = R2(
−→v2) – the image of the return clause of

Q1 is equal to the return clause of Q2, under P2.

A homomorphism of tableaux is defined the same way, except that
the condition about return clauses is dropped.

Notation We write Q1 ↔ Q2 to mean that there exists ho-
momorphisms Q1 → Q2 and Q2 → Q1 and we say that Q1

and Q2 are homomorphically equivalent. The existence of a ho-
momorphism Q1 → Q2 implies that for every I , Q2(I) ⊆ Q1(I),
and vice versa [1]. Hence, by bi-directional subset containment,
Q1
∼= Q2 iff Q1 ↔ Q2.

Example Consider our Movies query (Q1) and its semantically
optimized counter-part (Q2):

Q1 := for (m1 inMovies) (m2 inMovies)

wherem1.title = m2.title

return (m1.director,m2.actor)

Q2 := for (m inMovies)

return (m.director,m.actor)

It is easy to see that for every instance I that satisfies the
embedded dependency above, Q2(I) ⊆ Q1(I). To check that
there is a homomorphism h : Q1 → Q2; namely, the substitution
m1 7→ m,m2 7→ m, we first apply h to Q1 (which will “shadow”
the name m):

2 2015/8/4

h(Q1) := for (m inMovies) (m inMovies)

wherem.title = m.title

return (m.director,m.actor)

We see that each generator (m in Movies) in h(Q1) appears in
Q2. Next, we see that the where clause of h(Q1) is a tautology
and hence is entailed by the (empty) where clause of Q2. Finally,
we see that the two return clauses are equal, and conclude that
m1 7→ m,m2 7→ m is a homomorphism.

Note that there is no homomorphism Q2 → Q1, and so Q1 �
Q2. There are only two candidates: m 7→ m1 and m 7→ m2.
Neither works since the image of Q2’s return clause under ei-
ther substitution (i.e. either return (m1.director,m1.actor) or
return (m2.director,m2.actor)) is equivalent to Q1’s return
clause (return (m1.director,m2.actor)) under the equality inQ1

(m1.title = m2.title).

5. The Chase
The chase is a confluent rewriting procedure that rewrites queries
using EDs [1]. Let

C := forall
−−−−−→
(x inX)

where P (−→x)

exists
−−−−−→
(y in Y)

where B(−→x ,−→y)

Q := for
−−−−−→
(v in V)

where O(−→v)
return R(−→v)

and suppose there exists a (tableau) homomorphism h : front(C)→
Q. A chase step rewrites Q into step(C,Q) by adding the image
of the back of C:

step(C,Q) := for
−−−−−→
(v in V)

−−−−−→
(y in Y)

where O(−→v) ∧B(
−−→
h(x),−→y)

return R(−→v)

A chase step is semantics-preserving on instances that satisfy the
constraints [19], i.e.

C ` Q ∼= step(C,Q)

The chase algorithm itself simply repeats the chase step until it
finds a fixed point (up to homomorphic equivalence). That is:

chase(C,Q) ≡ Q′ iff
Q step(C,Q) step(C, step(C,Q)) . . . Q′

Termination of the chase is undecidable, but if it terminates the final
result is unique (up to homomorphic equivalence) [8]. Provided
certain fairness conditions are met [8], the chase extends easily to
sets of EDs by choosing a particular ED to chase with at each step.

A key theorem about the chase is that it reduces the question of
query equivalence under constraints to homomorphic equivalence.
This means that, if ~C is a set of EDs and Q1 and Q2 are queries:

~C ` Q1
∼= Q2 iff chase(~C,Q1)↔ chase(~C,Q2)

Example As we showed in the previous example, there is a ho-
momorphism x 7→ m1, y 7→ m2 from the front of our constraint

C := forall (x inMovies) (y inMovies)

where x.title = y.title,

exists

where x.director = y.director

to our original query:

Q1 := for (m1 inMovies) (m2 inMovies)

wherem1.title = m2.title

return (m1.director,m2.actor)

Hence, we can take a chase step:

step(C,Q1) := for (m1 inMovies) (m2 inMovies)

wherem1.title = m2.title ∧
m1.director = m2.director

return (m1.director,m2.actor)

which adds the where clause of the back of the constraint to
the query’s where clause. At this point we stop chasing, since
step(C, step(C,Q1)) is homomorphically equivalent (even syn-
tactically equivalent) to step(C,Q1). By the soundness of the
chase we have established that C ` Q1

∼= chase(C,Q1).

6. Tableaux Minimization
We now demonstrate how to minimize queries in the presence of
EDs, using a technique known as “tableaux minimization using
chase and back-chase” [8]. Suppose we are given a query Q and
set of EDs C. We first chase Q with C to obtain U , a so-called
universal plan. We then search for sub-queries of U (which are
intuitively obtained by removing generators from U), chasing each
in turn with C to check for equivalence with U . There will always
be a unique minimal query (up to homomorphic equivalence) [8].

Example - Movies Start with our query and constraint from the
introduction:

Q1 := for (m1 inMovies) (m2 inMovies)

wherem1.title = m2.title

return (m1.director,m2.actor)

C := forall (x inMovies) (y inMovies)

where x.title = y.title

exists

where x.director = y.director

The universal plan, i.e., chase(C,Q1), is:

U := for (m1 inMovies) (m2 inMovies)

wherem1.title = m2.title ∧
m1.director = m2.director

return (m1.director,m2.actor)

We proceed with tableau minimization by searching for sub-
queries of U . Removing the generator (m1 in Movies) and re-
placing m1 with m2 in the body of Q gives a smaller query:

Q2 := for (m2 inMovies)

return (m2.director,m2.actor)

To justify this, we need to check that C ` Q1
∼= Q2, which we can

reduce to checking U = chase(C,Q1)↔ chase(C,Q2). We find
that chase(C,Q2) ∼= Q2, so we will actually check that U ↔ Q2.
The identity substitution is a homomorphism Q2 → U : the im-
portant part to notice is the return clause, wherein (m2.director,
m2.actor) is equal to (m1.director, m2.actor) precisely because
of the equality m1.director = m2.director, which appears in U
but not in Q1. There is also a homomorphism U → Q2, namely,
m2 7→ m,m1 7→ m. We thus conclude that C ` U ∼= Q2

∼= Q1.

3 2015/8/4

Example - Indexing As we remarked in the introduction, a pro-
grammer might be able to optimize our Movies query directly,
without using the chase at all. But sometimes constraints are not
available to the programmer, such as when indices are gener-
ated dynamically. Consider the following query, which returns the
names of all People between 16 and 18 years old:

Q1 := for (p in People)

where p.age > 16 ∧ p.age < 18

return p.name

Technically, this query is not a purely conjunctive query because
the where clause involves the less-than predicate <. However, the
machinery of tableaux minimization can still be used.

Depending on the underlying access patterns, or the whims of
a database administrator, an RDBMS might transparently index
People by creating another relation Children , such that the fol-
lowing two constraints hold:

C1 := forall (p in People)

where p.age < 21

exists (c in Children)

where p.name = c.name ∧ p.age = c.age

C2 := forall (c in Children)

where

exists (p in People)

where p.name = c.name ∧ p.age = c.age

In order to use this new index, queries written against People
must be rewritten to use Children . Tableaux minimization provides
an automated mechanism to do so.

Let C = {C1, C2}. First, we find the universal plan U =
chase(C,Q1). We begin by chase stepping Q with C1. The iden-
tity substitution is a homomorphism front(C1) → Q1, because
p.age < 21 is entailed by p.age > 16∧p.age < 18; thus we chase
step to:

U := for (p in Person) (c in Children)

where p.age > 16 ∧ p.age < 18 ∧
p.name = c.name ∧ p.age = c.age

return p.name

and we find that U ∼= step(C1, U), so no further chase steps using
C1 are possible. Now we chase step U using C2, and we find that
U ∼= step(C2, U), so no further chase steps with C2 are possible.
Hence we have computed the universal plan U = chase(C,Q1).

Next, we minimize the universal plan by removing the Person
generator (note that to do so we must replace each occurrence of p
with some other well-typed variable, in this case c):

Q2 := for (c in Children)

where c.age > 16 ∧ c.age < 18

return c.name

We now “back-chase” Q2 with C. We can take no chase steps with
C1, because there is no substitution h that makes (h(p) inPerson)
equal to (c in Children). We can chase step with C2 using the
identity substitution to obtain:

Q′2 := for (c in Children) (p in Person)

where c.age > 16 ∧ c.age < 18 ∧
p.name = c.name ∧ p.age = c.age

return c.name

At this point, no further steps with C1 or C2 are possible.
Hence we have computed Q′2 = chase(C,Q2). Recall that our
goal is to check that C ` Q1

∼= Q2, which we do by checking
U = chase(C,Q1) ↔ chase(C,Q2) = Q′2; i.e., by checking
U ↔ Q′2. It’s easy to prove that U and Q′2 are homomorphically
equivalent under the substitution p 7→ c, c 7→ p, which concludes
the optimization.

7. Coq Development - Overview
In the rest of this paper we demonstrate how to shallowly embed
relational conjunctive queries into Coq and how to use dependent
types and tactics to implement tableaux minimization as described
in the first half of this paper. We will continue to use the running
movies example from the first half of the paper. That query is
expressed in Coq as:

Definition Movie : Type := (string × string × string).
Definition Movies : set Movie := . . .

Definition title x := fst x. (* x.title *)
Definition director x := fst (snd x). (* x.director *)
Definition actor x := snd (snd x). (* x.actor *)

Definition q : set (string × string) :=
m1← Movies ; m2← Movies ;
guard (m1.title = m2.title) ;
return (m1.director, m2.actor).

Here, we define a relation Movies where each tuple has type
Movie. We also declare simple functions to access individual fields
of the Movie type. For consistency with the first half of the paper,
we will continue to use dot notation. The next definition defines
the query, named q. Our Coq query syntax is inspired by Haskell’s
syntax for monadic computations, and we use Coq’s extensible
parsing mechanism to define (optional) custom syntax for pars-
ing query expressions. Intuitively, ← means for, guard means
where, and return means return. To the right of the colon is the
query’s type, set (string × string), which represents a set that
contains pairs of strings.

Given the above query and a representation of the functional
dependency from the introduction (title_director_ed) which
we will describe shortly, we can ask Coq to automatically construct
the minimized query with the following ‘proof script’:

Definition optimized_query:
{qopt : M (string × string) | title_director_ed→ qopt ∼= q}.
optimize solver.
Defined.

The type of optimized_query says that optimized_query is
a pair of a query, qopt, and a proof that qopt is equivalent to
q on instances satisfying title_director_ed. The actual Coq
term corresponding to optimized_query is constructed by the
optimize tactic. We can see the result of the optimization by
asking Coq to print the first component of the pair:

Eval compute in (proj1_sig optimized_query).
(* = x ← Movies ; return (x.director, x.actor)
* : set (string × string) *)

7.1 Queries and Constraints in Coq
We begin by defining a type of sets. Coq’s rich type system gives
us many possible choices, including sets as lists, set x := list
x, and sets as predicates, set x := x → Prop. In fact, we need
not use sets at all: any commutative, idempotent monad with zero
defines a type of collections for which the chase is sound [19].
To capture this generality, we use Coq’s type class mechanism to

4 2015/8/4

Class DataModel (M : Type→ Type) : Type :=
{ Mret : ∀ {T}, T → M T
; Mbind : ∀ {T U}, M T → (T → M U) → M U
; Mzero : ∀ {T}, M T
; Mimpl : ∀ {T}, M T → M T → Prop
; Mprod : ∀ {T U}, M T → M U → M (T ∗ U) :=

fun _ _ m1 m2⇒ Mbind m1 (fun x⇒ Mbind m2 (fun y⇒
Mret (x,y)))

; Mguard : ∀ {T}, bool→ M T→ M T :=
fun _ P m ⇒ if p then m else Mzero

(* plus many axioms *)
}.

(* Queries *)
Definition query {S T: Type}

(P : M S) (C : S → bool) (E : S → T) : M T :=
Mbind P (fun x ⇒ Mguard (C x) (Mret (E x))) .

(* Embedded Dependencies *)
Definition embedded_dependency {S S’: Type}

(F : M S) (Gf : S → bool) (B : M S’) (Gb : S → S’ → bool)
:= Meq (query F Gf (fun x ⇒ x))

(query (Mprod F B)
(fun ab⇒ Gf (fst ab) && Gb (fst ab) (snd ab))
(fun x ⇒ fst x)).

Figure 1. The DataModel and the definitions of for-where-
return queries and embedded dependencies.

express “chaseable monads” (see Figure 1) which we will refer to
using the type constructor M. The operations, but not the required
axioms, of our monadic interface are shown in Figure 1. Intuitively,
in a set monad these operations are:

• Mret v is the singleton set containing only v.
• Mbind m k is the function that unions all sets k x for every x in

the set m. We will write x ← m ; k for Mbind m (fun x ⇒ k)
where x occurs free in k.
• Mzero is the empty set.
• Mimpl m1 m2 states that m1 is a subset of m2. We extend subset

to equivalence (written Meq m1 m2) using mutual containment.

Using these as primitives, we define two additional operations.

• Mprod is the Cartesian product of two sets. (In an arbitrary
monad we require a strength [3].)
• Mguard P m is defined as Mzero, if P is false and m otherwise.

On top of the data model we define for-where-return queries
(Figure 1). In the definition, P represents the for clause, C repre-
sents the where clause, and E represents the return clause. Con-
cretely, the movies query from the introduction is represented as:

query (Mprod Movies Movies)
(fun ab⇒ (fst ab).title ?= (snd ab).title)
(fun ab⇒ ((fst ab).director, (snd ab).actor))

Note that the S and T arguments are omitted since they can be
inferred from the other arguments (e.g., S is determined by P).
P constructs the product of the Movies relation with itself. The
where clause is a function that accepts a pair where the first ele-
ment (fst ab) comes from the first copy of Movies and the sec-
ond (snd ab) comes from the second copy of Movies; the where
clause checks equality using Coq’s boolean-valued equality opera-
tor which we denote with ?=. The return clause returns a pair of
strings constructed from the pair of Movies .

We define embedded dependencies (Figure 1) using the front =
back definition from Section 3. Here, F is the for clause of the
front, Gf is the where clause of the front, B is the exists clause of
the back, and Gb is the where clause of the back. In this represen-
tation, the ED for the movies example is the following:

Definition title_implies_director : Prop :=
embedded_dependency

(Mprod Movies Movies)
(fun ab⇒ (fst ab).title ?= (snd ab).title)
(Mret tt)
(fun ab _ ⇒ (fst ab).director ?= (snd ab).director).

Here, the empty exists clause is represented by a singleton set
carrying the unit value tt.

Query Normalization In the first half of the paper, all of our
queries were normalized into a single for clause, a single where
clause, and a single return clause. But in a language-integrated
query system, we can relax this requirement. For example, we
could introduce an additional guard condition after binding m1.

Definition q_LOR : set (string × string) :=
m1← Movies ;
guard (m1.title ?= ‘‘Lord of the Rings’’) ;
m2← Movies ;
guard (m1.title ?= m2.title) ;
return (m1.director, m2.actor).

As is well-known [13], monadic computations such as relational
conjunctive queries can always be normalized into the flat form
used in the first half of this paper, and our optimizer performs this
normalization (in a fully verified way) during optimization.

7.2 Background: Tactic-based Programming
The core of the Coq Proof Assistant is a pure and dependently-
typed functional programming language, called Gallina. In addition
to Gallina, Coq also includes a Turing-complete, untyped “tactic”
language, calledLtac, which can be used to construct Gallina terms
in a semi-imperative style. Ltac is a meta-language for Gallina in
much the same way that macros are a meta-language for C++. Ltac

tactics generate Gallina terms that are checked by the Coq kernel
in the same way that hand-written terms are checked.

Remark. Our query optimizer is fully automated: to use it, a
user simply invokes a tactic called optimize. By the completeness
theorem for the chase [19], optimize will find the minimal equiv-
alent query or diverge when none exists. The details of our Coq im-
plementation that we now discuss describe the design decisions we
made when building our optimizer are not necessary for clients of
our optimizer to understand. However, many of the techniques are
general-purpose and can be re-used in other developments which
use tactics for similar purposes.

The Ltac Programming Model In this paper, we use Ltac to op-
timize queries in a similar way to Fiat’s use of Ltac to optimize
programs [7]. This use of Ltac is somewhat unorthodox; the stan-
dard use of Ltac is to prove theorems via “proof scripts” that ex-
press how proofs should be built. Indeed, the operational semantics
of Ltac are tailored to fit this standard use of Ltac, rather than to
fit our use of Ltac as a query optimizer. For example, every Ltac

tactic runs against a particular “proof obligation” (a.k.a goal), such
as x + y = y + x. In general, these goals are fully determined and
it is simply the tactic’s job to find a suitable proof. In order to use
Ltac to optimize queries we will run our tactics on partially speci-
fied goals which specify a constraint on a “unification variable” that
the tactic will seek to fill in while constructing a proof. The values
of these unification variables will be the optimized queries.

5 2015/8/4

We will demonstrate our use of Ltac on a simple goal, where
we want to instantiate the unification variable ?n with an optimized
version of the query on the right:

Meq ?n (x ← Movie ; y ← Movie ; ret x)

We think of the form of this goal as a “calling convention” of sorts
for the optimization. Here, ?n is the unification variable that we are
trying to fill in and the constraint is that the query we pick must be
equivalent to the query ‘x ← Movie ; y ← Movie ; ret x’. We
could simply pick ?n by reflexivity to be the full query, but that
would require the database execution engine to do an unnecessary
join. Instead, we will optimize the query on the right by appealing
to various transformations that are provably correct.

Optimization via Rewriting One simple way to perform opti-
mization is through rewriting. For example, the following lemma
expresses that queries are idempotent (note that the second genera-
tor is not used in the rest of the query):

Lemma Mbind_dedup : ∀ {T U} (m : M T) (k : T → M U),
Meq (Mbind m k) (Mbind m (fun x ⇒ Mbind m (fun _⇒ k x))).

Proof. . . . Qed.

Because Meq is an equivalence relation, we can use Ltac’s se-
toid rewriter to rewrite the goal using Mbind_dedup. Running
setoid_rewrite← Mbind_dedup on the goal above results in
the new goal:

Meq ?n (x ← Movie ; Mret x)

Note that this does not solve the unification variable ?n or the
goal; only the right-hand side of the Meq is changed yielding a
new goal to operate on. Because no more optimization is possible,
we solve the goal by appealing to the reflexivity of Meq which
implicitly instantiates ?n with ‘x ← Movie ; Mret x’. Note that
the optimized query no longer requires the extraneous join.

Optimization via Applying Lemmas Rewriting is a useful reason-
ing technique because the rewriting machinery is often able to auto-
matically construct the proofs necessary to justify the manipulation
deep within the term. However, because the above reasoning is oc-
curring at the top level of the goal, we could also use Ltac’s more
primitive eapply tactic with Mbind_dedup to yield a proof in a
single step. While both rewriting and applying lemmas are useful
for manipulation, we find that most interesting optimization is bet-
ter phrased using application because it is more predicable. In large
goals, rewriting could occur anywhere within the term, whereas
lemma application will only apply at the top level.

In building up larger automation procedures using eapply, we
use lemmas expressed so that their conclusion matches the current
goal and their premises express new constraints that we will pass to
other tactics. Consider the following (slightly contrived) example:

Meq ?n (Mprod a b)

If we wish to optimize a and b independently then we can eapply
the following lemma:

Lemma opt_plus : ∀ {T U} (m1 m1’ : M T) (m2 m2’ : M U),
Meq m1’ m1→
Meq m2’ m2→
Meq (Mprod m1’ m2’) (Mprod m1 m2).

When we eapply this lemma to the above goal, we expect m1
and m2 to be completely determined while m1’ and m2’ to be new
unification variables. Concretely, when we run eapply opt_plus
on the above goal, we get the following two sub-goals:

Meq ?m1’ m1 Meq ?m2’ m2

while at the same time instantiating ?n with Mprod ?m1’ ?m2’. As
our automation continues to fill in ?m1’ and ?m2’ (for example,
during further optimization), ?n will be automatically updated to
reflect these changes.

7.3 Implementing the Chase as a Tactic
Tableaux minimization makes heavy use of the chase, which we
have implemented as an Ltac tactic. Implementing the chase as a
tactic (as opposed to a Gallina function) has two critical advantages.
First, Coq tactics can invoke other Coq tactics. As we saw in the
indexing example in the first half of the paper, running the chase
can involve reasoning over predicates such as < that appear in
where clauses. By implementing the chase as a tactic, we can
appeal to Coq’s omega tactic for reasoning about <, for example.
Moreover, the particular predicates and associated tactics need not
be determined in advance; users are free to write arbitrary Gallina
code in where clauses, and to build custom tactics for reasoning
about this code. The second reason is that we are not obligated to
justify termination of Ltac scripts. The chase may never terminate,
but all Gallina functions must terminate, so any Gallina (but not
Ltac) implementation of the chase must be explicitly bounded by
some number of chase steps. (If desired, our Ltac version of the
chase can also be given an explicit bound).

Our chase tactic applies to goals that are contingent on EDs.
These EDs are expressed using the following goal structure:

title_director→
Meq ?q

(m1← Movies ; m2← Movies ;
guard (m1.title = m2.title) ;
return (m1.director, m2.actor))

Recall from the first half of the paper that running the chase
required several steps: choosing an ED, finding a candidate substi-
tution, checking that a candidate is in fact a homomorphism, taking
a chase step, and then checking for convergence to a fixed point. In
the rest of this section we describe how to implement each of these
in Ltac. In the process we distill reusable patterns for building op-
timization procedures in Ltac.

7.3.1 Finding an Embedded Dependency
In the movies example, there is only one embedded dependency
to chase with, but in more complex examples such as the index-
ing example there are multiple EDs. To find an appropriate ED,
we can exhaustively consider all of the user-supplied EDs. Demon-
strating this exhaustive enumeration serves as a useful primer for
the more complicated next step of finding a homomorphism. In-
deed, this section describes a general-purpose design pattern for
doing exhaustive enumeration using Ltac.

When there are multiple candidate EDs (e.g., A, B, and C) that we
wish to use to optimize the query q, the goal posed to the optimizer
tactic has the following form:

A ∧ B ∧ C→ Meq ?q q

Two lemmas allow us to exhaustively consider these EDs.

Lemma ed_pick_left : ∀ {A B C}, (A → C) → (A ∧ B→ C).
Proof. tauto. Qed.
Lemma ed_pick_right : ∀ {A B C}, (B→ C) → (A ∧ B→ C).
Proof. tauto. Qed.

Both of these lemmas are trivial tautologies that can be proven by
the tauto tactic; however, we have found that separating the task
of crafting each lemma from its proof dramatically improves our
ability to evolve our optimizer. ed_pick_left focuses on the left-
hand-side of a conjunction while ed_pick_right focuses on the

6 2015/8/4

right-hand-side. When only a single ED remains, we can process it,
in this case chasing with it, which we will discuss in more detail in
the next section.

We use these lemmas in the following backtracking search tactic
which uses Ltac’s + combinator1 in the following recursive tactic.

Ltac ed_search :=
lazymatch goal with
| ` _ ∧ _→ _⇒

(simple eapply ed_pick_left
+ simple eapply ed_pick_right) ; ed_search

| ` _→ _⇒ idtac
end.

Here, ‘lazymatch goal with’ performs syntactic matching of the
goal against the candidate patterns selecting the first that matches.
The first branch chooses either the left- or right-side using the
above lemmas and then continues the search by recursively call-
ing ed_search. The second branch is the default case which fin-
ishes the search when the premise does not contain a conjunction
using idtac which is a no-op. It is important to note that the se-
mantics of + causes deep backtracking. For example, (a + b) ; c
is equivalent to (a; c) + (b; c). This behavior allows us to chain
ed_search with the chase (described in the next section) and back-
track to consider a new ED if the chase step fails to make progress
with the first ED.

7.3.2 Running the Chase Step
Once we have isolated a single ED to chase, we need to apply a
theorem witnessing the soundness of the chase. This soundness
theorem is phrased to match the current goal.

1 Theorem chase_sound {S S’ T U}
2 (P : M S) (C : S → bool) (E : S → T)
3 (F : M S’) (Gf : S’ → bool) (B : M U) (Gb : S’ → U→ bool)
4 : ∀ (h : S → S’),
5 Mimpl (Mmap h P) F →
6 (∀ x, C x = true→ Gf (h x) = true)→
7 embedded_dependency F Gf B Gb→
8 Meq (query P C E)
9 (query (Mprod P B)

10 (fun ab : S × U⇒ C (fst ab) &&
11 Gb (h (fst ab)) (snd ab))
12 (fun ab⇒ E (fst ab))).

In this theorem, lines 8-12 will unify with the goal. Line 8 and
the first argument to Meq extract the values of the goal and the
second-argument to Meq instantiates the unification variable with
the optimized query. Line 4 represents the substitution (h). Line 5
expresses the requirement that h maps variables in the query (P)
to the variables in the front of the ED (F). Line 6 represents the
requirement on the where clause, namely that the where clause
of the query (C) implies the where clause of the front of the
ED (Gf). In the next two sections we describe the representation
of these pieces in more detail and explain how we compute this
homomorphism.

Finding a Homomorphism In the definition of a chase step in
Section 5 a homomorphism is a map from variables bound in
the front of the embedded dependency to the variables bound in
the for clause of the query. Since our queries are Gallina terms,
explicitly referencing binders by name can be quite difficult, and is
not very extensible (i.e., not invariant under α-renaming). Instead,
we encode our mapping of binders as a function between the types
being bound. In this example, the type of the for clause of the

1 The + combinator is new in Coq 8.5. Before Coq 8.5, performing this
search modularly required writing tactics in continuation-passing style.

query is Movie × Movie and the type of the forall clause is also
Movie × Movie, so we are looking for a function h : Movie ×
Movie→ Movie × Movie. Looking at the query and the ED, there
are four choices:

h x = (fst x, fst x) h x = (snd x, fst x)

h x = (fst x, snd x) h x = (snd x, snd x)

We are going to construct these functions incrementally using
theorems that represent individual steps of reasoning. The search
is much the same as the search for isolating a particular ED, but
with two main differences. First, we must now find a binder for
each binder in the front of the ED, i.e. we must perform a new
search for each binder. Second, while doing this, we must explicitly
construct the substitution h so that we can use it when checking the
remainder of the homomorphism (line 6 in chase_sound). When
searching for the homomorphism, the goal will have the following
form, where P is the for clause of the query and F is the forall
clause in the ED:

Mimpl (Mmap ?h P) F

In the above Mmap expresses the application of the substitution ?h,
i.e. Mmap f m = x ← m ; Mret (f x). Note that here we are prov-
ing an inclusion (Mimpl) rather than an equality. This is essential
because fields not used to construct F from P could be empty
which would make the left-hand side empty while the right-hand
side would be non-empty.

When solving this goal, the first task is to break F down into
atomic units that correspond to the binders. The pick_split
lemma applies when F is formed from a Mprod:

Lemma pick_split
: ∀ {T U U’ : Type} (m : M T) (u : M U) (u’ : M U’) f g,
Mimpl (Mmap f m) u →
Mimpl (Mmap g m) u’ →
Mimpl (Mmap (fun x⇒ (f x, g x)) m) (Mprod u u’).

Proof. . . . Qed.

This lemma states that we can find a morphism from m to Mprod u
u’ if we can find a morphism from m to u and from m to u’. Note that
in addition to breaking down the morphism by decomposing it into
f and g, the left-hand side of the implication in the conclusion also
shows how to use f and g to construct the final homomorphism.

Repeatedly applying pick_split will eventually break the
forall clause down into atomic elements that we can match up
with the query. This matching is essentially the same as the ED
search procedure except that, as above, we must record the way
to reconstruct the h function. The following three lemmas express
(and justify) these manipulations.

Lemma pick_left
: ∀ {T’ U’ V} (f’ : U’ → V) (x : M V) (y : M T’) (k’ : M U’) ,
Mimpl (Mmap f’ k’) x →
Mimpl (Mmap (fun x⇒ f’ (fst x)) (Mprod k’ y)) x.

Proof. . . . Qed.
Lemma pick_right
: ∀ {T’ U’ V} (f’ : U’ → V) (x : M V) (y : M T’) (k’ : M U’) ,
Mimpl (Mmap f’ k’) x →
Mimpl (Mmap (fun x⇒ f’ (snd x)) (Mprod y k’)) x.

Proof. . . . Qed.
Lemma pick_here
: ∀ {T} (x : M T), Mimpl (Mmap (fun x⇒ x) x) x.
Proof. . . . Qed.

pick_left decides to use only the left-hand side of the Mprod k’
y to determine x, pick_right is analogous for the right-hand side.
Finally, pick_here applies when the value being searched for is
exactly the value being bound in which case it can pick the value
directly.

7 2015/8/4

The search completes by solving the goal and, by side-effect,
instantiating ?h with a function representing the substitution.

Proving the Side-Conditions With a candidate substitution in
hand, the next step is to discharge the side condition which ensures
that the where clause of the embedded dependency implies the
where clause of the query. In our movies example, this amounts
to the following:

∀ x : Movie × Movie, (fst x).title ?= (snd x).title = true
→ (fst (h x)) . title ?= (snd (h x)).title

Once we get to this step, h is exactly one of the substitutions
constructed by the previous step. When we plug in a particular sub-
stitution, i.e. ‘h x = (fst x, snd x)’ (recall that we are enumerat-
ing all of the potential homomorphisms), and simplify, we are left
to solve the following goal:

∀ x : Movie × Movie, (fst x).title ?= (snd x).title = true
→ (fst x). title ?= (snd x).title = true

While this goal is true simply by equational reasoning, in gen-
eral these side conditions can require more complex reasoning. For
example, in the indexing example from Section 6 we must prove
the following implication which relies on arithmetic reasoning:

∀ p, p.age > 16 && p.age < 18 = true→ p.age < 21 = true

We can use Coq’s omega tactic to discharge arithmetic goals such
as the one above. In order to facilitate this sort of domain-specific
reasoning, we parameterize the chase tactic by a tactic to discharge
side-conditions.

Ensuring Progress After the side-condition is checked, the final
step is to ensure that this chase step makes progress by adding new
structure to the query. Semantically, we express this by ensuring
that the new query is not homomorphically equivalent to the old
one. Checking homomorphic equivalence between queries is es-
sentially the same as what we have done up to this point except that
we must also show that the morphism preserves the return clause
of the query under the assumptions in the where clause. The Ltac

to check this condition is straightforward given the machinery that
we developed up to this point. The entire Ltac is (essentially) the
following:

Ltac prove_query_morphism solver :=
eapply check_query_morphism_apply ;

[find_bind_morphism
| simpl ; solve [solver]
| simpl ; solve [solver]]) .

Ltac prove_query_homomorphic_equal solver :=
split; prove_query_morphism solver.

Here chaining the eapply with ; [a | b | c] allows us to spec-
ify different tactics to run on each of the individual goals produced
by eapply check_query_morphism_apply. Note again that
these tactics are parameterized by the underlying solver (solver)
that they will use to discharge the side-conditions.

7.3.3 Computing the Fixed-point
With the ability to iterate over EDs (Section 7.3.1) and to compute
a chase step (Section 7.3.2), it is simple to implement the entire
chase. The tactic is the following:

Ltac chase solver :=
repeat first

[eapply transitive_refine_conditional ;
[solve [ed_search ; chase_step solver]
|]
| reflexivity].

Lemma minimize_drop
: ∀ {T T’ V : Type} (qb : M T) (qb’ : M T’) qg (qr : _ → V) f

(qb’’ : M T’) qg’’,
Find f

→ Meq (query (Mprod qb qb’) qg qr)
(query qb’ (fun y ⇒ qg (f y,y)) (fun y ⇒ qr (f y,y)))

→ Meq (query qb’ (fun y ⇒ qg (f y,y)) (fun y ⇒ qr (f y,y)))
(query qb’’ (fun y ⇒ qg’’ (f y,y)) (fun y ⇒ qr (f y,y)))

→ Meq (query (Mprod qb qb’) qg qr)
(query (Mmap (fun y⇒ (f y, y)) qb’’) qg’’ qr).

Proof. . . . Qed.

Lemma minimize_keep
: ∀ {T T’ V : Type} (qb : M T) (qb’ : M T’) qg (qr : _ → V) (

qb’’ : M T’) qg’’,
(∀ x : T,
Meq (query qb’ (fun y ⇒ qg (x,y)) (fun y ⇒ qr (x,y)))

(query qb’’ (fun y ⇒ qg’’ (x,y)) (fun y ⇒ qr (x,y)))) →
Meq (query (Mprod qb qb’) qg qr)

(query (Mprod qb qb’’) qg’’ qr).
Proof. . . . Qed.

Figure 2. Minimization lemmas.

where transitive_refine_conditional expresses transitivity
under implication:

Lemma transitive_refine_conditional
: ∀ {T} (a b c : M T) (P : Prop),

(P → Meq b c) → (P → Meq a b) → (P → Meq a c).
Proof. . . . Qed.

In the chase tactic, repeat computes the transitive closure of
the chase step by running the rest of the tactic until the goal is
solved or the tactic fails. first [a | b] runs a and, if a fails,
runs b. The first branch uses the transitivity lemma above to break
the goal into two sub-goals. For the first sub-goal, we run a sin-
gle step of the chase by first finding an embedded dependency
(ed_search) and then chasing it using solver to solve the side
conditions (chase_step solver). The solve ensures that the tac-
tic completely solves the goal which guarantees that we completed
the chase step. If the goal is solved, the second goal is interpreted
by the rest of the tactic due to the repeat. If the chase step fails,
then the second branch of the first runs solving the goal using
reflexivity which picks the input query to be the output query.

7.4 Query Minimization
The final step in optimization is to remove redundant generators
(binds) from the query. By now, we have already discussed most
of the techniques. The high-level approach is to use incremental
lemmas to iterate through the binders and attempt to drop each one
by expressing a side-condition that expresses that the information
in that binder can be reconstructed from the other binders.

There are two core lemmas that express minimization transfor-
mations (shown in Figure 2). The first, minimize_drop, states that
we can drop the first (left) binder if we can find a way to compute
it from the right binder, i.e. a morphism from Mmap f qb’ to qb.
The first premise of this theorem, Find f, is a dummy premise;
it is trivially true. We include it in order to simplify constructing
f using tactics. For example, we can easily write lemmas analo-
gous to pick_left, pick_right, and pick_here looking only at
the type of f. The second premise, ensures that this choice of f re-
spects the equivalence of the query. To solve it, we “back chase” the
left-hand side of the equivalence and try to determine if it is homo-
morphically equivalent to the right-hand side. The second lemma,
minimize_keep, is the fallback case. If the tactic can not find a

8 2015/8/4

way to re-construct the removed binder from the other binders of
the query, then it cannot remove that binder. However, it can (and
should) still optimize the rest of the query. To represent the rest of
the query, we universally quantify over the values that could come
from the relation and recursively optimize the rest of the query.

Post-processing The primary purpose of the optimize tactic is
to minimize the number of binds in a query, but we have also added
some query simplification steps to be performed after minimiza-
tion. In the movies example, the result of minimization is:

query (Mmap (fun x⇒ (x,x)) Movie)
(fun xy⇒ (fst xy).title = (snd xy).title)
(fun xy⇒ ((fst xy).director, (snd xy).actor))

After simplification, the duplication of the bound variable is re-
moved and the where clause is eliminated since it is testing the
equality of x. title with itself. The final query is the following:

query Movie (fun _⇒ true) (fun x⇒ (x.director, x.actor))

8. Discussion of Tactic-based Optimization
Tactic-based development has several trade-offs compared to a
more traditional approach that would implement a query optimizer
as a Gallina function (e.g., [4]).

Benefits The primary benefit of implementing the optimizer as a
tactic is the ability to extend the optimizer with a minimal amount
of work. Much of this benefit is due to the flexibility of working
indirectly on Gallina’s underlying terms. For example, we can
extend the chase algorithm with support for nested relations by
proving new lemmas that show how to locally manipulate terms.
A non-tactic implementation would need to adjust its concrete
term representations to support the more sophisticated structure of
nested queries and then update all of its algorithms (and proofs)
to work on the new nested representation. Similarly, we explicitly
support arbitrary Coq computation within where clauses. While the
examples in this paper use only equality (=) and less-than (<) in
where clauses, there is nothing preventing us from reasoning about
more complex operations (e.g., case-insensitive string comparison).

Another benefit of the tactic-based approach is that we are able
to re-use a considerable amount of Coq’s underlying infrastructure.
Features such as higher-order unification, existing automation li-
braries, and Ltac’s backtracking search mechanism are all useful
when building a query optimizer. We have found, in particular, that
the new backtracking proof search facilities, namely + and depen-
dent goals, introduced in Coq 8.5, are extremely useful when build-
ing tactics such as these. For example, without this backtracking
feature, tactics that wish to backtrack must be written in continua-
tion passing style, and even then it can be quite difficult to maintain
all the necessary information.

Drawbacks There are also drawbacks to using tactics to imple-
ment a procedure as sophisticated as semantic optimization. First,
tactics are completely untyped which makes it cumbersome to track
down errors, which are often due to simple typos. While simple
types would help track some information, throughout the course
of development we found that one of the most cumbersome tasks
was keeping track of simple properties about goals; for example,
whether the unification variable to be constructed was on the left
or the right of an Meq. Similarly, many lemmas had to be dupli-
cated to handle extra bits of context; for example, we had to write
separate lemmas for chaining together refinements in the presence
and absence of embedded dependencies. Several authors have pro-
posed more richly typed tactic-based programming languages, no-
tably Mtac [23] and VeriML [20], and while neither of these are as

Time (s)
Phase Movie Index
Normalize 0.64 0.48
Chase 0.89 3.9
Minimize 1.14 34.14
Simplify 0.09 0.23
Total 3.50 38.8

Figure 3. Performance of the optimizer.

mature or rich as Ltac, it would be interesting to explore whether
their features would be useful in our development process.

Another problem inherent to Ltac is speed. Figure 3 shows the
time it takes to optimize the queries presented in this paper using
a Intel Core i5-4460 CPU at 3.20GHz on Coq 8.5 beta 2. The
normalize task (not discussed) is the time it takes to normalize
Coq terms, using the monad laws, into the flat form query P
C R. The chase and minimize phase are the phases described
in Sections 7.3 and 7.4. The final simplify phase performs the
rudimentary non-semantic optimization, discussed briefly at the
end of Section 7.4. The Total row is the total of all of the phases
run from beginning to end with no other timing or intermediate
results. Overall, the optimizer is somewhat slow, especially on the
index example. In this case, a non-negligible fraction of the overall
time in the index example can be attributed to solving numeric side
conditions using the omega tactic.

There are a few caveats to keep in mind when interpreting these
performance results:

• Finding a homomorphism between two (conjunctive) tableaux
is an NP-hard problem [8]. Specialized heuristic algorithms
exist to solve this problem quickly, but our implementation uses
a naı̈ve brute-force search.
• Coq’s Ltac implementation is both interpreted and single-

threaded.
• Much optimization is done offline where performance is not

essential.

One way to make our query optimizer faster is to implement
pieces of it directly as Coq programs (similar to [4]). Indeed, our
initial implementation was a Gallina function rather than a tactic
and it ran nearly instantaneously on the movies query. However, im-
plementing the optimizer entirely as a Gallina program suffers from
the drawbacks discussed above. In particular, scaling it to the index
example would have required implementing (and proving sound) a
Gallina function to reason about numbers and <. While in theory
such a procedure would only need to be implemented once, com-
posing Gallina functions such as these has been a notoriously diffi-
cult problem which has only recently been addressed [17]. Finding
the exact balance between the two approaches is a promising direc-
tion for future work.

Coq as a DBPL Although our focus in this paper is on the seman-
tic optimization of queries shallowly embedded in Coq, it is worth
reflecting more broadly on the use of Coq as a host language for
embedded queries. The biggest drawback of Coq in this context is
its purity. Establishing a connection to a database is invariably an
effectful operation, and in Coq such operations must be defined as
axioms and segregated behind a monadic interface [18]. Coq can
extract such effectful code into OCaml or Haskell where it can be
executed, but the Coq kernel itself cannot execute effectful code.

On the positive side, Coq inherits all of the usual advantages
of a strongly-typed functional programming language for hosting
a query language [13]. Moreover, Coq’s dependent types can be
used to express computations that cannot be (safely) expressed in

9 2015/8/4

languages with weaker type systems. For example, it is possible to
define a Coq function f that can only be called on an input instance
I that is known to satisfy some constraint C using the following
pseudo-code:

Definition f (C: ED) I (pf: holds I C) := . . .

Indeed, the constraint C need not even be known at compile time.

9. Conclusion
In this paper we have described a verifying semantic query opti-
mizer for Coq based on the chase [8]. Our approach leverages pro-
gramming with tactics to manipulate raw Coq terms and simultane-
ously produce an optimized query and a proof that the query has the
same meaning as the input query. Implementing the optimizer as a
tactic has many advantages, including, first and foremost, essen-
tially limitless extensibility: because Coq tactics can invoke other
tactics, users are free to plug-in their own proof automation to be
used during the optimization process. For example, one of our ex-
amples makes use of Coq’s omega tactic for reasoning about natural
numbers and the less than relation <. As far as we are aware, no
other work on formalizing the relational model in Coq (e.g., [4])
implements the chase as a tactic.

However, implementing query optimization as a tactic does pose
certain challenges, most of which arise because Ltac was designed
with proof scripting in mind, rather than query optimization. To
work in this environment we construct terms incrementally using
unification variables and express properties about them using goals.
These goals form a sort of “calling convention” for tactics and
we use lemmas to perform incremental reasoning either through
rewriting or direct application. We leverage backtracking search to
explore multiple potential optimization paths. In phrasing problems
dealing with binders we express syntactic manipulation of binders
extensionally as functions that operate on environments. We hope
that our solutions to these issues in this paper will allow others to
create their own query (and program) optimizers as Coq tactics.

While not currently competitive with more traditional program-
ming languages in terms of speed, Ltac is continually improving
and similar systems feature prominently in the development of
large-scale verified software systems such as Idris [6] and Agda [2].
Moreover, recent work [9, 12, 22] has shown how tactic-based pro-
gramming can be made first-class (i.e., reified into the language)
by exploiting dependent types. This next wave of tactic-based lan-
guages and libraries are already demonstrating substantial perfor-
mance improvements and it is likely that tactic-based optimization
will soon be a viable design pattern for language-integrated query
systems.

Acknowledgement The authors would like to thank Lucian
Popa for answering many questions about semantic optimization.

References
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] Agda Development Team. The Agda proof assistant reference manual,

version 2.4.2. 2014.
[3] Michael Barr and Charles Wells, editors. Category theory for comput-

ing science, 2nd ed. 1995.
[4] Vronique Benzaken, velyne Contejean, and Stefania Dumbrava. A

Coq Formalization of the Relational Data Model. In Zhong Shao, ed-
itor, Programming Languages and Systems, volume 8410 of Lecture
Notes in Computer Science, pages 189–208. Springer Berlin Heidel-
berg, 2014.

[5] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development. Coq’Art: The Calculus of Inductive Construc-
tions. Texts in Theoretical Computer Science. Springer Verlag, 2004.

[6] Edwin Brady. Idris, a general-purpose dependently typed program-
ming language: Design and implementation. Journal of Functional
Programming, 23:552–593, 9 2013.

[7] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam
Chlipala. Fiat: Deductive synthesis of abstract data types in a proof
assistant. In POPL’15, pages 689–700, 2015.

[8] Alin Deutsch, Lucian Popa, and Val Tannen. Query reformulation with
constraints. SIGMOD Rec., 35:65–73, March 2006.

[9] Dominique Devriese and Frank Piessens. Typed Syntactic Meta-
programming. ICFP ’13, pages 73–86, New York, NY, USA, 2013.
ACM.

[10] Tom Ellis. Opaleye. Technical report,
http://github.com/tomjaguarpaw/haskell-opaleye.

[11] Benedict R. Gaster and Mark P. Jones. A polymorphic type system for
extensible records and variants. Technical Report NOTTCS-TR-96-3,
Department of CS, University of Nottingham, November 1996.

[12] Gregory Malecha. Extensible Proof Engineering in Intensional Type
Theory. PhD thesis, Harvard University, 2014.

[13] Torsten Grust. Monad Comprehensions. A Versatile Representation for
Queries. In The Functional Approach to Data Management, P.M.D.
Gray and L. Kerschberg and P.J.H. King and A. Poulovassilis (eds.).
Springer Verlag, 2003.

[14] Laura M. Haas, Mauricio A. Hernández, Howard Ho, Lucian Popa,
and Mary Roth. Clio grows up: from research prototype to industrial
tool. In SIGMOD, 2005.

[15] Qi heng, Jarek Gryz, Fred Koo, T. Y. Cliff Leung, Linqi Liu, Xiaoyan
Qian, and K. Bernhard Schiefer. Implementation of Two Semantic
Query Optimization Techniques in DB2 Universal Database. VLDB,
1999.

[16] S. Kazem Lellahi and Val Tannen. A calculus for collections and
aggregates. In CTCS ’97, 1997.

[17] Gregory Malecha, Adam Chlipala, and Thomas Braibant. Composi-
tional Computational Reflection. In Gerwin Klein and Ruben Gamboa,
editors, Interactive Theorem Proving, volume 8558 of Lecture Notes in
Computer Science, pages 374–389. Springer International Publishing,
2014.

[18] Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wis-
nesky. Toward a verified relational database management system.
POPL ’10, pages 237–248, New York, NY, USA, 2010. ACM.

[19] Lucian Popa and Val Tannen. An equational chase for path-
conjunctive queries, constraints, and views. In ICDT, 1999.

[20] Antonis Stampoulis and Zhong Shao. VeriML: Typed Computation
of Logical Terms Inside a Language with Effects. ICFP ’10, pages
333–344, New York, NY, USA, 2010. ACM.

[21] Val Tannen, Peter Buneman, and Limsoon Wong. Naturally embedded
query languages. ICDT ’92, pages 140–154, London, UK, 1992.
Springer-Verlag.

[22] Paul van der Walt and Wouter Swierstra. Engineering proof by reflec-
tion in agda. In Implementation and Application of Functional Lan-
guages, Lecture Notes in Computer Science, pages 157–173. Springer
Berlin Heidelberg, 2013.

[23] Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami, Aleksan-
dar Nanevski, and Viktor Vafeiadis. Mtac: A monad for typed tactic
programming in coq. In ICFP’13, ICFP ’13, pages 87–100, New York,
NY, USA, 2013. ACM.

10 2015/8/4

	Introduction
	Queries
	Embedded Dependencies
	Homomorphisms
	The Chase
	Tableaux Minimization
	Coq Development - Overview
	Queries and Constraints in Coq
	Background: Tactic-based Programming
	Implementing the Chase as a Tactic
	Finding an Embedded Dependency
	Running the Chase Step
	Computing the Fixed-point

	Query Minimization

	Discussion of Tactic-based Optimization
	Coq as a DBPL
	Conclusion

