
Bringing Business Objects into Extract-Transform-Load (ETL) Technology

Huong Morris*, {Hui Liao, Sriram Padmanabhan, Sriram Srinivasan},
{Phay Lau, Jing Shan, Ryan Wisnesky}**

IBM T. J. Watson Research, 19 Skyline Drive, Hawthorne, NY 10532

 {thm, huiliao, srp, sriram}@us.ibm.com, ptaclau@gmail.com, jshan@ccs.neu.edu, wisnesky@stanford.edu

* This work was carried out when the author was at the IBM Almaden Research Center, California.
** This work was carried out when the authors were at the IBM Almaden Research Center as Extreme Blue interns.

Abstract

 Business objects represent the key concepts that a
business needs to operate such as people, services,
products, etc. but transforming these objects to and
from existing data models can be difficult. Business
objects have traditionally been represented in a
backend data store using relational databases, and
techniques for transformation must work with these
stores. But such access may violate the encapsulation
these business objects require, and so conventional
approaches may not provide an adequate solution. In
this paper, we examine how to use Extract-Transform-
Load (ETL) tools to provide business object
transformations. We show how to solve some of these
issues by using pluggable components and introduce
customized operators for ETL tools. We demonstrate
our solution using a commercial ETL system that
allows access to several Product Data Management
systems and illustrate the use of our technique with
several case studies drawn from various industries.

1. Introduction

 As business systems have consistently expanded
throughout the enterprise, the need for multiple
systems with different architectures to inter-operate
becomes ever more important. To make this happen,
enterprises are turning to higher level software, such as
the solutions provided by SAP, Oracle�’s PeopleSoft,
Siebel, and the IBM WebSphere Product Center
(WPC), to manage their business objects directly.
Existing work in this area mainly focuses on how to
design business objects in business systems and how to
use them in business processes [2, 3, 9, and 10].
Despite advances in information integration techniques
[5, 7]; access to heterogeneous data sources remains a

challenge. The goal of efficient management of
distributed information has become progressively more
difficult for several reasons [7]: 1) the data volume is
growing due to increased digitization of sources, 2)
data is coming from a greater variety of these sources,
and 3) virtual marketplaces and global partnerships are
requiring integration efforts which stretch across the
boundaries of previously siloed systems and individual
corporations. In addition, the customer challenges are
also growing due to: 1) the complexity of integration
of multiple data sources within and between
applications; 2) the need to include non-traditional data
sources including sensors, multimedia, etc, 3) the need
to combine structured and unstructured data, 4) time
pressure to deploy new applications, and 5) people and
skill shortages to develop new applications. Finally, as
discussed in [4], the major trends of Enterprise
Information Integration (EII) and Enterprise
Application Integration (EAI) are overlapping and that
creates one giant integration problem.
 Every important entity in a business can be
represented as a business object. Business objects are
capture the semantics of business concepts and are
directly useful for business processes. They represent
the key concepts that a business needs to operate such
as people, services, and whatever is sold. Business
objects are different from simple bits and bytes data
embedded inside software; they are used directly by
business developers to implement business functions.
Master data is used to define key data that uniquely
defines business objects. Examples of commercially
available product data management (PDM) systems
that manage business objects were given above.
However, because of their intrinsic complexity, these
products do not interoperate with each other. Even
within a PDM system, transforming the business
objects to and from existing data models, as might be

!EEEEEEEEE !nnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn eee---BBBuuusssiiinnneeessssss EEEnnngggiiinnneeeeeerrriiinnnggg

999777888---000---777666999555---333333999555---777///000888 $$$222555...000000 ©©© 222000000888 !EEEEEEEEE

DDDOOO! 111000...111111000999///!CCCEEEBBBEEE...222000000888...777222

777000999

!EEEEEEEEE !nnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn eee---BBBuuusssiiinnneeessssss EEEnnngggiiinnneeeeeerrriiinnnggg

999777888---000---777666999555---333333999555---777///000888 $$$222555...000000 ©©© 222000000888 !EEEEEEEEE

DDDOOO! 111000...111111000999///!CCCEEEBBBEEE...222000000888...777222

777000999

required by a merger or new business relationship, can
be difficult. Most PDM systems represent business
objects, in terms of a master data management (MDM)
system, in a backend data store using relational
databases. Any techniques for transformation must be
able to access these backend data stores. But naïve
access to these objects may have unintended
consequences, caused by the semantics of the data and
the relationships and constraints the data must abide
by. As a result, conventional approaches to integration
may not provide an adequate solution. Furthermore,
one of the key problems that arise as an enterprise
attempts to round up its data is that of �“semantic
reconciliation�”, that every user and application see a
consistent and persistent interpretation of these key
business objects.
 We describe Callisto, which uses ETL tools to
transform or merge business objects efficiently and
effectively. Examples of previous ETL work focused
on the modeling and managing of the ETL processes
can be found in [2]. The paper is organized as follows.
In the next section, we explain why the use of ETL
tools can be useful in access, aggregate and manage
business objects. In section 3 and 4 we describe the
Callisto project and its implementation with two
realistic use cases.

2. ETL Technology and Business Objects:
are they �‘apples�’ and �‘oranges�’?

 Accessing disparate business objects can be
complex due to business objects being compound
versions of the data embedded inside many databases
and unstructured data sources. Current IT technology
does not directly support needed functionalities against
these objects, such as data transformation, analysis,
integration etc. For example, business intelligence (BI)
is an important building block in an enterprise
nowadays. It helps to make better business decisions.
 Integration is usually tackled using one of four main
techniques: transformation tools (as in ETL),
replication, database gateways, and virtual data
federation. Extract-Transform-Load (ETL) tools are
pieces of software responsible for the extraction of data
from several sources, cleansing the data and
customized insertion of the data into a data warehouse
as depicted in Figure 1.

Figure 1: ETL Processes. Derived from [11]
with flows added.

 At the lower right layer representing data store layer,
we have targeted data warehouse after the loading
activities have been performed at the upper right hand
layer. On the left hand lower layer, data come from
various sources (e.g. relational tables and files or from
the data warehouse). These data sources are extracted
(left hand upper layer) by extraction routines, which
provide either complete snapshots or differentials of
the data sources. Then these data are propagated to the
Data Staging Area (DSA) where they are transformed
and cleaned before being loaded to the data warehouse.
 ETL tools have become a standard technology that
aims at easing the pain of data transformation. The user
of ETL tools can focus on the semantic mapping from
a data source to a data target and let the ETL tool to
take care of the underlying transformation details. This
idea is a good fit to what is needed in business objects
management systems. But current ETL technology
only supports the lower level software data (e.g. data
inside a DBMS). In short, there is an �“impedance
mismatch'' between business object aware software and
conventional systems involved in business processes.
 When business objects are hidden inside these
applications, it is hard to inter-operate without a deep
understanding of the semantics of each of the
applications, and this understanding often requires an
understanding of the implementation. This makes such
business process interaction hard and complicated [6].
Callisto addresses this problem by integrating Business
Objects as a component of ETL toolset.

3. Integration Challenges

 Current ETL technology supports relational formats,
such as relational database tables, CSV files etc. To
represent business objects inside of the ETL, we must
find a way to describe business objects in a relational
format without resorting to examining how the
business objects are implemented and stored. In
essence, we must create custom ETL operators that

777111000777111000

expose the required information. This is not an easy
task because business objects are usually semi-
structured or unstructured. In our project, the business
objects in WPC are semi-structured.
 The key challenges are: 1) relational presentation of
a business object must be as rich as the original object.
That is, information about the business object should
not be lost when the object is represented in a
relational way. In addition, the information presented
in the relational view must be presented in a way that is
useful. 2) in many business-oriented systems, there is
no clear boundary between data and metadata. An
ETL system requires operators to expose metadata
while a dataflow is designed, and to manipulate the
data during runtime. 3) different business objects of
the same type may not share properties, so that there is
not necessarily a common relational representation for
different instances of a type of business object. For
instance, a retail Category business object may be
represented as a table with columns for 'name' and
'price', but another Category object may require 'UPC'
and 'description�’. However, both are called Category
objects, and so we cannot always decide on relational
representations for an entire class of such objects. 4)
business objects and their relational views must relate
to each other in a consistent, complete, and useful way.
For instance, it is common for one business object to
reference another; say, for a person object to reference
a department object, thus capturing the relationship
that the person is employed by the department. Thus,
when multiple business objects are represented in
multiple relational tables, if one objects references
another, that information must be suitably and
consistently encoded wherever it is represented in the
relational tables.

4. Callisto Overview

 In this section, we describe how Callisto integrates a
typical commercial business object system to another
typical commercial ETL toolset, namely the IBM
Websphere Product Center (WPC) [12] and IBM ETL
toolset called SQL Warehousing (SQW)1 toolset. We
show how on one side, we have business entities which
are better represented with hierarchical and
multidimensional objects (which is what WPC
basically does); and on the other side, we have a

1 SQW is one of the toolsets included in the IBM DB2 Data
Warehouse Enterprise (DWE) product. Like most commercially
available ETL toolset, SQW provides a framework called the Data
Flow. The data flow is an extensible framework that allows users to
build data extraction, transformation and load sequences as a flow of
�‘Operators�’.

product toolset like SQW that understands relational
data and business intelligence.

4.1. Callisto Architecture

 Callisto, as depicted in Figure 2, is essentially
implemented as a set of plug-ins around an ETL
system. Our implementation used Eclipse plug-ins to
SQW framework. Callisto extracts and loads
information into the WPC using the scripting
mechanism and a JSP interface. Callisto also
transforms information to and from the hierarchical
format that the WPC uses by examining a model of
WPC business objects. Finally, Callisto presents and
receives relational representations of WPC information
from the ETL tools set. The ETL tools set provide
support for transforming relational information and
connectivity to various relational systems, thus
allowing WPC information to be integrated into the
SQW framework as form of business object operators.
This ETL tools set also provides BI and other operators
which can then be used by Callisto.

Figure 2: Callisto architecture

4.2. Callisto MDM data model

 Callisto MDM data model is based on WPC data
model. WPC is a product information repository for an
enterprise�’s master data. This information is
maintained in a relational database in the back end, but
is represented to the user as business with retail flavor.
The �“core objects�” in the WPC are catalogs, items,
attributes, category trees (a.k.a. hierarchies) and
categories (a.k.a. hierarchy nodes). Attributes hold
values or group other attributes. Attributes are defined
through specifications (a.k.a. specs).

Callisto LocationLocation

OrganizationOrganization

Trading PartnerTrading Partner

Product

ItemItem

CategoryCategory

LocationLocation

OrganizationOrganization

Trading PartnerTrading Partner

Product

ItemItem

CategoryCategory

WPC

Communication
Product Center

Scripts

Communication
via relational tables

and ETL APIs

Data Warehouse

IBM ETL

Other
Relational
Systems

777111111777111111

 Items make up the primary data element in WPC.
They are typically represented as SKU�’s, individual
products, etc. Catalog is the containers for items. An
item belongs to one an only one catalog. Each catalog
has one primary specification that defines the attributes
that all the items in that catalog share.
 Category trees are hierarchical arrangements of
categories. This provides users with different �“views�”
into the same set of data (e.g. UNSPSC, UDEX, etc.).
 Hierarchies are built and stored separately from
items and catalogs. This enables the same hierarchy to
be deployed in multiple catalogs, and also allows items
in a catalog to be viewed in multiple hierarchies.
 Items are mapped to categories. Categories defined
specific attributes for the items mapped to them
through secondary specifications.

4.3. Callisto UML data model

 In Callisto, we use IBM Rational Data Architect
(RDA) to model the ETL process and Rational Rose
[8] to model WPC objects. This UML tool defines data
models in a higher abstracted level using a set of well-
defined graphical tools. Figure 3 shows the overview
of this modelling approach. Each WPC object is
modeled as a standard class. And their containment
relationships are modeled as aggregation relationships
in the Rose model.
 After modeling the above two steps, these models are
exported as EMF �‘ecore�’ (Eclipse modeling framework
core) models. Note that our UML model of business
objects is incomplete and is a simplification; however,
it is sufficient and simple for us to use in this
prototype.

 Figure 3: Callisto MDM Model

Also note that because of EMF/serialization
constraints, every business object must have a parent

container, which is not necessarily how the WPC
operates.

4.3.1. EMF code generation. The Eclipse Modeling
Framework (EMF) [1] is a Java framework for
generating tools and other applications based simple
class models. EMF uses these �‘ecore�’ models and
generates customizable Java code that can then be used
to manage the life cycle of these business objects,
including their relationships as well as provides means
of serializing and de-serializing these objects as
XML/XMI files. The code generated from the UML
and EMF artifacts are what we refer to as the �‘WPC
model�’.

4.4. Callisto implementation

 Callisto provides the ability to examine the WPC
catalog and to build a metadata model of the catalog
information in the Eclipse environment using EMF and
conforming to the XML metadata interchange (XMI)
standard. Callisto operates by analogy with the existing
SQW toolset. Similar to how the SQW design studio
allows users to build models of relational tables,
Callisto allows users to examine a WPC instance and
select relevant catalog information. This information
is used to populate an EMF model of this WPC
instance (i.e. the model provides information that
categories related; hierarchies have these categories,
etc). This model, which may be serialized to disk (as
XML/XMI files) and browsed from within Callisto, is
the foundation of the rest of Callisto.

We developed 4 operators, which represent the
business objects for Import and Export functions in
WPC:

1. Item Export: Export a category of items from
the WPC. The items contain the values of
their attributes as columns in a table.

2. Item Import: Import a category of items into
the WPC, with attribute information.

3. Hierarchy Export: Export a hierarchy from
the WPC, where parent-child relationships are
maintained using paths and parent/child
columns.

4. Hierarchy Import: Import a hierarchy into
the WPC, while maintaining parent/child
relationships.

 With a model in hand, user can drag and drop the
Callisto operators into a Data flow. Depending upon
the operator chosen, the user would then select
different aspects of the WPC instance in order to build
the operator�’s properties. For instance, when using
Item Export, a user would browse the WPC model and
select a particular category of items to export.

777111222777111222

 Callisto provides a code generator for each operator,
which generates script that performs the required WPC
operation. For example, an Item Export operator
causes the generation of a WPC script that involves
exporting the description of the item being exported.
Finally, Callisto provides runtime component that
plugins into the SQW engine, so that data flows build
using Callisto operators can be executed. This runtime
executes the generated scripts to communicate with a
WPC instance, sending or receiving information as
required.

5. Scenarios

Use case 1: Our first scenario focuses on master data
integration: a typical customer pain-point for most
MDM systems. WPC catalog building is a semi-
automatic process that can require a substantial amount
of skill and manpower to deploy. In this scenario,
Callisto�’s aim to see whether the process integration of
new data from and into WPC master catalog can be
simplified.
 Situation: In a fictitious example, AceMart, a large
retail chain plans to expand its product portfolio by
acquiring BetaMart. The acquisition needs to be
completed by integrating AceMart�’s product catalog
with BetaMart�’s various data sources.
 System Environment: AceMart uses the IBM WPC
to centrally manage its product catalog information.
BetaMart�’s product, suppliers, stores, and pricing
information are scattered throughout different systems
and suppliers�’ databases.
 Limitation: AceMart�’s upper management has
required that the integration of BetaMart�’s product
information into AceMart be completed in three
months. However AceMart�’s systems group estimates
that this could take much longer. Before Callisto, the
procedure to integrate BetaMart�’s catalog into
AceMart�’s would be to transform all BetaMart�’s
catalog into AceMart�’s WPC; load data into WPC
using WPC import script and this can be error prone
and time consuming.
 Solution using Callisto:
1. Define Data Source by selecting WPC Item Source

Operator. This will open up a WPC instance with
BetaMart�’s catalog item and category that user can
select. In our demonstration as shown in Figure 4
below, we select the �“Drill�” category in
BetaMart�’s Makita catalog.

2. Define Target Source by selecting WPC Item
Target Operator. This will open up a WPC
instance with AceMart�’s catalog. We select the
AceMart�’s Drill catalog for Item Target.

3. Complete Dataflow in SQW design studio

.

Figure 4: Use case 1: MDM integration

4. Load Data into AceMart Master Catalog by
clicking on �“Run�” in the SQW design studio.
Internally, Callisto will move all Drills from
BetaMart�’s catalog to AceMart�’s catalog. Thus
complete the migration of Drills item catalog from
BetaMart to AceMart.

Use case 2: Our second scenario shows how Callisto
can enable WPC master data to be integrated into a
Data Warehouse to be analyzed by Business
Intelligence (BI) tools. Traditionally, BI tools were
limited to analyzing transactional data. Callisto adds a
new dimension, master data, into the Data Warehouse
that provides a whole new capability for BI.
 Situation: A fictitious online bookseller,
Books4Sale.com, found that the sales of its Harry
Potter books grew two-fold when it changed the
category from �“Children�” to �“Fantasy�”. Changing
categories can dramatically boost sales.
Books4Sale.com would like to analyze the past trends
of its sales to determine the optimal category for its
products.
 System Environment: The bookseller uses the
IBM WPC to centrally manage its products and
categories. WPC manages the Books4Sale catalog but
it does not have the ability of a BI tool such as
reporting and analysis for evaluating product trends.
 Limitation: Conventional data export techniques
are too slow to react to the high volume of daily
catalog changes. Failing to spot a bad branding or
categorization can lead to a huge loss. In addition,
peak sales trends may be missed by slow, conventional
techniques
 Solution using Callisto:
1. Define WPC Item Sources operator. Again, as in

Use case 1, this will open up an instance of WPC�’s
Books4Sale catalog. From this catalog, the user
selects �“Fantasy�” book category and can see that
the category is defined by 2 attributes: id and

777111333777111333

name. When the data flow is run, this operator
will connect the WPC instance and present this
selected item source, namely Fantasy, in the WPC
category as a relational table to the next SQW
operators.

2. Add the Current Time operator. This operator is
provided by the SQW, will add time stamps
information to the information from WPC.

3. Define BI Item Target operator. Again, this is
another SQW existing operator. It is a business
intelligence operator and it takes the input data
from the previous operators, namely the WPC Item
Source and the Current Time operators; merges it
with existing data in the data warehouse.

4. Complete Dataflow. Once the execution of this
flow is complete, the new information will be
available for analysis in next step.

5. Analyze Results using any reporting and analysis
too. In our experiment, we use IBM Alphablox
and data mining tools.

 Figure 5 shows the SQW design studio screen shot
once steps 1 to 4 completed.

Figure 5: Use case 2: Bringing BI into MDM –
Screen shot of SQW Design Studio for steps 1
to 4.

9. Conclusion

 We have demonstrated that by adding some
conceptually simple Java-based operators to a
transformation tool, business objects can be integrated,
assembled or disassembled. Our approach has been
relatively simple and makes use of commonly available
technology: we use UML and EMF modeling, which
capture the key constraints between objects, to
generate Java code. The java code is used to present
relational representations of selected business object
instances based on the object�’s state. Finally, custom
operators use these Java objects to present clean

relational table schemas (virtual tables) to the rest of
the SQW transformation framework.
 While this is a prototype, and we are short of a
complete system, our work provides some
encouragement that existing business intelligence tools
can be mediated in their use of data residing in
relational database systems. Further experience and
development of more and richer operators for different
master data management systems such as SAP, Siebel
and PeopleSoft would validate the approach.

6. Acknowledgements

The authors thank the IBM Software Group, especially
the ETL and the Websphere Product Center
development groups for providing resources to this
project. The authors also thank the anonymous
reviewers for a thorough and constructive set of
reviews of this paper.

7. References

[1] Eclipse Modeling Framework (EMF),
http://www.Eclipse.org/emf/.
[2] P. Eeles and O. Sims, �“Building Business Objects�”, Wiley
Computer Publishing, 1998.
[3] G. Gillibrand, �“Essential business object design�”,
Communications of the ACM, 43, 2, 2000.
[4] A. Halevy, N. Ashish, D. Bitton, M. Carey, D. Draper,
J.Pollock, A. Rosenthal, and V. Sikka, �“Enterprise
Information Integration: Successes, Challenges and
Controversies�”, ACM SIGMOG 2005: 778-787.
[5] J. Madnavan, and A. Halevy, �“Composing Mappings
Among Data Sources�”, VLDB 2003:572-58.
[6] A. Maier, B. Mitschang, F. Leymann, and D. Wolfson,
�“On combining business process integration and ETL
technologies, BTW 2005.
[7] H. Morris, S. Lee, E Shan, and S. Zeng, �“An Information
Integration Framework for Product Lifecycle Management of
Diverse Data�”, ACM JCISE 2004, Vol 4, No 4.
[8] IBM Rational Rose, IBM Rational Data Architect,
http://www.ibm.com/software/rational
[9] O. Sims, �“Business Objects, Delivering Cooperative
Objects for Client-Server�”, McGraw-Hill Book Co., 1994.
[10] J. Sutherland, Business Objects in corporate information
systems�”, ACM Computing Survey, 27, 1995.
[11] P. Vassiliadis, A. Simitsis, and S. Skiadopulos,
�“Conceptual modeling for ETL processes�”, DOLAP, 2002.

777111444777111444

