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Introduction

The Inheritance Anomaly has been a thorn in the side of the concurrent object-oriented language
community for 15 years. Simply put, the anomaly is a failure of inheritance and concurrency to
work well with each other, negating the usefulness of inheritance as a mechanism for code-reuse in
a concurrent setting.

Over the years, many researchers have proposed language constructs to mitigate the effects of
the anomaly; many new languages have been designed to try to avoid the anomaly altogether. Until
about ten years, all of this research was ad-hoc; there was so unifying theory to guide researchers
in discovering how effective their efforts were. In fact, some argued that the anomaly wasn’t even
really a problem at all. todo: cite

About ten years ago, a Ph.D. thesis was written that gives a unifying theoretical framework
for examing what the anomaly is and how it may be avoided. That work is the sole framework for
formally examining what the anomaly is, how languages are vulnerable to it, and how it may be
minimized.

Unfortunately, there has been no formal work on the topic since. Even now, languages are
designed without regard to the basic results of the formal analysis and confusion about the anomaly
persists.

This thesis is an attempt to extend the formal analysis of the anomaly in both breadth and
depth. It builds heavily on the original work, and it is hoped that by increasing the scope of
the formal work on the anomaly, others will begin to undertand and use the results and methods
developed both here and in the original analysis.

Each chapter examines a previously unanalyzed aspect of the anomaly. Analysis of new lan-
guages and domains extends the breadth of the treatment, and an analysis of more expressive
notions of concurrency extends the breadth of the treatment.

A brief overview of the anomaly and framework is presented in todo cite chapter 1; however, it
is extremely unlikely that a reader will be able to follow this thesis without first reading the (very
accessible) Ph.D. thesis [1] of Lobel Cnogorac.

Chapter 2 extends the results of the thesis to history-based guard languages.
Chapter 3 extends the results of the thesis to account for intra-object concurrency and introduces

several new notions of typing in this context; a conversion procedure for generalizing the notions
from the thesis to this new framework is given.

Chapter 4 extends the results of the thesis to specification languages, where an analagous
anomaly has been discovered.
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Chapter 1

The Inheritance Anomaly and Formal
Framework

This chapter presents a quick overview of the inheritance anomaly and the cornerstone formal
framework found in Lobel’s thesis [1].

Definitions that are used in more than one chapter are defined in this section. Definitions that
are used in only one chapter are defined where they are used.

This chapter is included as a convenient reference for many of the concepts used in the later
chapters. It is in no way a replacement for [1].

Key concepts that are defined in this chapter include behavior preservation (inheritance entails
subtyping), incremental inheritance (inheritance by only adding code), TypesM (normal subtyp-
ing), TypesR and TypesT (concurrent subtyping); the formal definition of inheritance anomaly
(mismatch between subtyping and inheritance), subtyping in concurrent languages (obeying super-
class synchronization), Lobel’s Theorem (no inheritance mechanism is perfect), traces (sequences of
object states) and behaviors (sets of traces representing objects) and the history-sensitive anomaly
(a particular anomaly instance).

1.1 An Overview of the Inheritance Anomaly

The Inheritance Anomaly is a failure of inheritance to be a useful mechanism for code-reuse that is
caused by the addition of synchronization constructs (method guards, locks, etc) to object-oriented
languages. When deriving a subclass through inheritance, the presence of synchronization code
often forces method overriding on a scale much larger than when synchronization constructs are
absent, to the point where there is no practical benefit to using inheritance at all.

A good introduction to the anomaly may be found in [14].

Example 1.1.1. A classic example of the inheritance anomaly is the BoundedBuffer History-
Sensitive Anomaly [14]. Consider the following class:

public class BoundedBuffer {
protected Object[] buf;
protected int MAX;
protected int current = 0;
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Buffer(int max) {
MAX = max;
buf = new Object[MAX];

}
public synchronized Object get() throws Exception {

while (current<=0) { wait(); }
current--;
Object ret = buf[current];
notifyAll();
return ret;

}
public synchronized void put(Object v) throws Exception {

while (current>=MAX) { wait(); }
buf[current] = v;
current++;
notifyAll();

}
}

This is a classic bounded buffer. The inheritance anomaly occurs when we would like to reuse our
BoundedBuffer implementation in deriving a new subclass, HistoryBuffer, that behaves exactly
like BoundedBuffer, except that it has an additional method gget(). gget() behaves exactly like
get() except that it cannot be called immediately after get(). To create the new subclass requires
redefining all inherited methods, as shown below:

public class HistoryBuffer extends BoundedBuffer {
boolean afterGet = false;
public HistoryBuffer(int max) { super(max); }
public synchronized Object gget() throws Exception {

while ( (current <= 0) || afterGet ) {
wait();

}
afterGet = false;
return super.get();

}
public synchronized Object get() throws Exception {

Object o = super.get();
afterGet = true;
return o;

}
public synchronized void put(Object v) throws Exception

super.put(v);
afterGet = false;

}

3



}

The reader is encouraged to examine [14] for more examples, and general discussion, of the
anomaly.

Many have speculated that the anomaly occurs because of a conflict between how synchroniza-
tion is expression and how inheritance works. However, in reality, the problem is that in concurrent
object-oriented languages, our notions of subtyping and inheritance taken from sequential languages
lead to problems. These problems are compounded because in some languages and in many pro-
grammers’ minds, inheritance is subtyping, and vice-versa. A clear seperation between these two
concepts will help the reader a great deal in the chapters that follow.

The essence of the anomaly, from a programmers perspective, is as follows: I have a class C

which implements some behavior B. I have defined a subtype of behavior B, say B�, and now I
must create a new class C � that implements B�. C � should be able to inherit from C to reuse the
code in C. However, I am forced to redefine much of C’s behavior in writing C �. This re-writing is
the anomaly, as it occurs far more often when concurrency is involved than when it is not.

We do not see the anomaly in sequential languages because our notion of subtyping in sequential
languages is very weak. In many languages, an object is a subtype of another if it has all the methods
of the parent; in other languages, subtyping is synonymous with inheritance and subtypes (usually)
must have all the methods of the parent. Regardless of the particulars of the language, the fact
remains that to create a subtype requires simply adding new methods to the inheriting class. In
other words, every subtype of a class can be created through incremental inheritance – that is, by
only adding methods to the class definition. This way of thinking about subtypes is the notion of
TypesM defined in [1].

In concurrent languages, we have different expectations of what it means to be a subtype. In
addition to having all the methods of the parent, we want a subtype to behave like the parent with
respect to synchronization. This notion is very fuzzy – formalizing it is one of the key contributions
of [1]. But suffice it to say that all the subtype behaviors we would like to be able to express are
not defineable using only incremental inheritance. Thus the inheritance anomaly occurs.

The contribution of the work in [1] is many-fold. Among the primary results are

1. A formalization of what subtyping means in concurrent object-oriented languages.

2. Several useful definitions of subtyping (TypesM , TypesR, Typesf , TypesR).

3. A taxonomy of anomalies generated by those notions of subtyping.

4. A definition of incremental inheritance and behavior preservation.

5. A characterization of inheritance as a syntactic notion.

6. Lobel’s Theorem, which states that no inheritance mechanism is perfect.

7. An application of the methods to over a dozen languages.

1.2 An Overview of the Framework

These notions are all defined in [1], but are presented here for quick reference.
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Definition 1.2.1 (Method Sequences). A sequence of methods is an ordered sequence whose
members are drawn from Keys, where Keys is the set of method names in a given language. The
concatenation of two method sequences α and β is denoted αβ. In the bounded buffer example,
�put, get� is a method sequence, and put, get ∈ Keys and �put, get� ∈ Keys∗. Note that a method
sequence need not correspond to any particular calling sequence on an object; that is, �get, put�
cannot occur for any instance of BoundedBuffer, but it is still considered a sequence.

Definition 1.2.2 (Incremental Inheritance). Let P and Q be classes in some language. That
is, P and Q are sequences of symbols recognized by the language as representing a class; this is
a characterization of inheritance as a syntactic notion. Q incrementally inherits from P , written
P ���I Q, if and only if Q is derivable from P through the use of inheritance without method
overriding or deletion of any kind.

Definition 1.2.3 (TypesM). A class Q is a subtype of P , with respect to TypesM , if the methods
of Q are a subset of those of P . We know that if Q incrementally inherits from P , then Q is a
subtype of P with respect to this notion.

Definition 1.2.4 (Behavior Preservation). An inheritance mechanism is behavior preserving
with respect to some notion of Types if and only if for all classes P and Q, P ���I Q implies Q is
a subtype of P .

In sequential languages, an object’s methods may be invoked at any time. In concurrent lan-
guages, methods may not execute at any time; there are synchronization constraints that prevent
this. For instance, in a locking buffer, there must be a call to unlock in between any two calls
to lock. We say that the object only accepts message sequences where this property holds. If
we incrementally inherit from the locking buffer, because we have not overridden methods, only
added them, we expect the way this new class responds to messages to be identical to the old
class, until a new method not in the old class executes. That is, if �m1,m2, . . . ,mn� was acceptable
to the locking buffer, that sequence must also be acceptable to the new subclass. However, once
the new class receives a message that the parent can’t handle, its behavior has no relation to the
parent anymore. This notion of subtyping – that the subtype behaves like its supertype until a
new message is received – is called TypesT [1]. This intuition leads to two related notions:

Definition 1.2.5 (Traces and Behaviors). Let P be a class in some language. We say that
bec(P ) denotes the “behavior” of P . That is, bec(P ) is the set of all sequences of messages that
an instance of P can accept. Note that we assume that every instance belonging to a class has the
same behavior. Thus, this formalism cannot express that the behavior of say, Buffer(4) which
might be different from Buffer(8). This assumption seems limiting but it is shown in [1] that it
does not actually restrict the power of the formalism. In the language of traces [6], bec(P ) is the
set of all possible traces from a new instance of P .

Definition 1.2.6 (TypesT ). Let X and Y be sets of method sequences. Then X �T Y denotes that
X is a supertype of Y with respect to TypesT . Let Super and Sub be classes. Then bec(Super)
and bec(Sub) are sets of method sequences. We have that bec(Super) �T bec(Sub) if and only
if bec(Super) ⊆ bec(Sub) and for every method sequence u ∈ bec(Sub), u = vz for some v ∈
bec(Super) and some z, possibly empty, such that the first element of z, if it exists, never occurs
in any sequence of bec(Super).
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To investigate the anomaly, one defines a notion of Type that should be incrementally derivable
from a supertype, and then examines the inheritance mechanism to see if that subtype can, in
fact, be defined by incremental inheritance. If not, an inheritance anomaly has occurred. Behavior
preservation under TypesT holds for virtually all concurrent object-oriented languages [1].

Definition 1.2.7 (TypesR). TypesR is a refined notion of TypesT that is sufficient to define the
history-sensitivity anomaly [1, 5].

The main result of [1] is the following theorem, which I have dubbed Lobel’s Theorem as it is
part of Lobel Crnogorac’s Ph.D thesis:

Theorem 1.2.8 (Lobel). If a language is incrementally behavior preserving with respect to TypesT ,
then it is not anomaly-free with respect to TypesR.

Lobel’s theorem tells us that there is no such thing as a perfect inheritance mechanism – that we
either have to allow for classes that are not behavior preserving (which leads to its own problems;
see [1], or live with the potential of the anomaly occuring (which, although disappointing, does
not mean that the anomaly must occur in anything other than pathological cases. In fact, most
attempts that claim to have solved the anomaly actually just banish it to pathological cases, which
in many cases is just as good).

6



Chapter 2

History-based Guard Languages

In 2002, another language designed to minimize the anomaly was released: the Java-dialect JEEG.
JEEG uses a combination of method guards and temporal logic to minimize the anomaly. During

execution, the JEEG runtime maintains a per-object history of method invocations, and method
guards may use both temporal-logic quantifiers over the object’s history and instance variables to
determine if a method may be invoked. JEEG uses temporal logic for both ease of use and because
a more expressive logic would add considerable runtime cost. JEEG’s combination of temporal
logic and method guards is too weak to solve the inheritance anomaly, so the question naturally
arises as to whether allowing a stronger logic with method guards would solve the anomaly.

The cornerstone formal analysis goes a long way toward answering this question. However, the
techniques in the paper cannot be directly applied to history-based guard languages without some
tweaking. This chapter provides that tweaking.

2.1 History-based guard languages

A history-based guard language is any language that associates with each method a corresponding
boolean guard. When the guard evaluates to true, the method may be invoked; when the guard
evaluates to false, any attempt to invoke the method will block until the guard evaluates to true.
Only one thread may be inside of an object at a time, and so methods are invoked in isolation of
each other.

The guard may refer to instance variables and to the history of completed method invocations
on that object. The evaluation of the guard must not change the state of the object, must be
side-effect free and must be deterministic. In addition, each guard must only allow invocation of
the associated method; guards may not be shared.

This definition, although intuitive, leads to a restriction of the expressive power of the language
in the case where a method is invoked that in turn invokes a method with a guard. Unfortunately,
this situation is not analyzed in [1], other than to say that the analysis can be extended to handle this
situation. For our purposes, this means that when a method is invoked, there are two possibilities:
calls from that method to other methods either 1. ignore the guard or 2. the method’s guard must
guarantee that other guards will also be true. That is, if method m1 invokes m2, then it must
always be the case that if the guard for m1 evaluates to true the the guard for m2 evaluates to
true. Alternatively, classes may be re-written to avoid this possibility. In any case, this issue is of
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no relevence to the analysis.
In a history-based guard language, classes have the following structure:

class P {
ivar1, ivar2, ..., ivarN
method1, method2, ..., methodM
method1: guard, ..., methodN: guardN

}

During inheritance, methods and method guards may be overridden separately. When a guard
is overridden in a subclass, it is language-dependent whether or not the guard will also be evaluated
in the superclass.

2.2 Two tweaks

Our goal is to prove the following theorem: history-based guard languages are behavior preserving
with respect to TypesT and are therefore not anomaly-free with respect to TypesR. To do so requires
two tweaks:

1. We must establish that history-based guard languages are, in fact, behavior preserving with
respect to TypesT . This result seems obvious but there is some confusion regarding meta-
level information. That is, use of an object history feels like a meta-level construct, and some
other languages employing meta-level constructs, like composition filters [3] are not behavior
preserving. Therefore we establish the behavior preservation property for history-based guard
languages.

2. The proof of Lobel’s theorem requires a result that, according to the author, holds for all
languages that we know of. This result holds for history-based guard languages, but the
author’s method for deriving it fails. We therefore present an example of how the method fails
and give an alternate construction which establishes the required result, therefore allowing
Lobel’s theorem to apply to history-based guard languages.

These two tweaks allow Lobel’s theorem to hold and thus give our main result, which tells us
that no matter how strong the logic for method guards is, their use cannot solve the anomaly.

2.2.1 The first tweak: Behavior Preservation

Our first tweak is to show that history-based guard languages are, in fact, behavior preserving with
respect to TypesT . We know that regular guard languages are behavior preserving [1], and so we
must show that the addition of object histories does not alter this property. Note that the reader
will definitely need to consult [1] to fully understand this section.

Theorem 2.2.1. History-based guard based languages are incrementally behavior preserving with
respect to the notion TypesT .
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Proof. Let Super and Sub be classes in a history-based guard language such that Super ���I Sub.
Formally, to show that history-based guard languages are incrementally behavior preserving with
respect to TypesT , we must show that impT (Sub) ⊆ impT (Super). We will not define impT here
as we will prove an alternate property that implies this condition. However, the proof below, that
proving our alternative condition is sufficient, is included for completeness.

1) bec(P ) = �beh impT (Super) by 4.13 in [1]
2) bec(Q) = �beh impT (Sub) by 4.13 in [1]
3) bec(P ) �T bec(Sub) to be proved
4) �beh impT (Super) �T

�beh impT (Sub) by 1,2,3
5) impT (Sub) ⊆ impT (Super) by 4.13 in [1]

Therefore, if we can show that bec(Super) �T bec(Sub), that bec(Super) is a supertype of
bec(Sub) with respect to TypesT , then the theorem is proved. To prove this requires showing two
things: bec(Super) ⊆ bec(Sub) and that for every method sequence u ∈ bec(Sub), u = vz for some
v ∈ bec(Super) and some z, possibly empty, such that the first element of z, if it exists, never occurs
in any sequence of bec(Super). We begin with the first conjunct, that bec(Super) ⊆ bec(Sub):

Definition 2.2.2. Let X be an instance of some class. Then history(X) denotes the sequence
methods accepted by X, and ivars(X) denotes the values of its instance variables. Note that we
are implicitly assuming that at any point in the execution of a program, these values are always
well defined.

Proposition 2.2.3. The state of an object X in a history-based guard language is completely
captured by ivars(X) and history(X).

Proof. We know that in a non-history based guard language, the state of an object is completely
captured by ivars(X) [1]. As the only new information history-based languages add is the history
of method sequences accepted by X, it follows that history(X) and ivars(X) determine the state
of X.

We may now begin our proof in earnest. Let P (for Parent) be a new instance of Super and C

(for Child) a new instance of Sub. We will first prove two lemmas and need a definition

Definition 2.2.4 (Running). Let X be an instance of a class and u a sequence of methods. Then
we may run u on X, and provided u is acceptable to X, we obtain a new instance X � whose state
is that of X after receiving the method calls in u.

Lemma 2.2.5. Let u ∈ bec(Sub). Then if u contains only methods common to Super and Sub,
then u ∈ bec(Super).

Proof. We may prove this by induction on the length of the methods in u.
Base case: Let u = ��. Then u ∈ bec(Super), vacuously. Also note that after running u,
history(C) = history(P ) and ivars(C) = ivars(P ). Induction: Let u = �m1,m2 . . .mn� ∈
bec(Sub), and run P and C with u. As no new methods from Sub are in u, we know that
u must be acceptable to P . Because the code invoked is identical in P and C, we have that
history(P ) = history(C) and ivars(P ) = ivars(C). We wish to show that mn+1 is accepted by P ,
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and thus that umn+1 ∈ bec(Super). Note that C accepts mn+1 and C’s guard for method mn+1

is identical to P ’s. Because history(P ) = history(C) and ivars(P ) = ivars(C), it follows that P

must accept mn+1 by todo citeabove. As in our formalism all instances of a class behave identically,
u ∈ bec(Super).

Lemma 2.2.6. Let u ∈ bec(Super). If u contains only methods common to Super and Sub, then
u ∈ bec(Sub).

Proof. The proof is analogous to the proof of the previous lemma.

Lemmas 2.2.5 and 2.2.6 state that until a subclass receives a method not defined by its parent,
the behaviors of both the parent and child are the same. This is intuitively obvious because until a
new method is received by a subclass, because no new code is executed, instances in the super and
subclass are executing identical code. This result also holds for non-history based guard languages
[1]. Note that this result depends on each guard only affecting the invocability of its associated
method.

With the preliminaries out of the way, we may now show that bec(Super) ⊆ bec(Sub). This
follows immediately from 2.2.5 and 2.2.6.

Next we must prove the second conjunct, that for every method sequence u ∈ bec(Sub), u = vz

for some v ∈ bec(Super) and some z, possibly empty, such that the first element of z, if it exists,
never occurs in any sequence of bec(Super).

Choose u ∈ bec(Sub). There are two possible cases:

1. u contains only methods common to Super and Sub. Then from 2.2.5 we have that u ∈
bec(Super). Thus u = v and z = ��, and the definition holds.

2. u contains at least one method that Sub defines that is not in Super. In this case their must
be a first method z0 ∈ u such that z0 is defined in Sub but not Super. We may therefore
write u in the form u = vz0z�, where v contains only methods common to Super and Sub.
Note that both v and z� may be empty.

It is obvious that z ∈ bec(Sub); this is the prefix property of traces. If v is empty, v ∈ bec(Super) by
definition. Otherwise, v contains only methods common to Super and Sub, and by Lemma 2.2.5
v ∈ bec(Super). z0 cannot occur in any sequence of bec(Super) by definition. Thus the definition
holds.

We have thus shown that Definition 4.11 in [1] holds, and hence history-based guard languages
are incrementally behavior preserving with respect to TypesT .

2.2.2 The second tweak: Patching the Proof

The proof of Lobel’s theorem rests on an a result that does not necessarily hold for history-based
guard languages. To state the result we first need a definition.

Definition 2.2.7 (States). Let Z be a set of method sequences. Then state(Z)z denotes the set
of method sequences from Z acceptable after z is received. That is, state(Z)z is the restriction of Z

to only sequences that begin with z. So, in essense, state(bec(Q))q is the set of method sequences
that an instance of Q can accept after it receives method q. This is a more formal definition of
running from above.
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The proof of Lobel’s theorem given in [1] rests on the following result that does hold for history-
based guard languages even though the given construction fails:

Cornerstone assumption: Let P and Q be classes. Whenever P ���I Q and z ∈ bec(Q) then
it is possible to construct new classes P �, Q� such that

P � ���I Q� and
bec(Q�) = state(bec(Q))z and
bec(P �) = state(bec(P ))w for some w ∈ bec(P )

In the context of most languages this means that P � and Q� differ from P and Q only in the
values of their instance variables. This is because the state of an instance is determined by the
values of its instance variables. But in other languages like JEEG, the state of an instance also
depends on the history of method invocations in addition to instance variables. Importantly, this
history can not be modified by changing instance variables. (Note that the requirement for some
w ∈ bec(P ) seems artificial; it requires that whenever we have an instance of Q that has been
mutated, we must be able to mutate an instance of P using only method calls such that we can
change the instance variables of the instances to obtain the new inheritance relationship between
P � and Q�. It is not obvious that this property is true; we take it here on faith. It is possible that
if this property were false, the entire proof would collapse, and so elucidating why this property is
true would make an excellent addition for any future work.)

The method for obtaining P � and Q� is to change the instance variables in P and Q. This is
not sufficient in history-based languages. However, we can still construct P � and Q� in a different
way. The classes P � and Q� will not have as much as a resemblance to P and Q as they would have
had in the original construction, but they still do exist. To see how his method fails, consider these
classes:

class P {
method p() {}
guard p when lastEvent == p || null

}

class Q extends P {
method q() {}
guard q when lastEvent == q || null

}

Choose z = �q�. Assume we can create classes P � ���I Q� such that bec(Q�) = state(bec(Q))q
and bec(P �) = state(bec(P ))w for some w ∈ bec(P ). Class P ’s behavior is that it accepts any
number of calls to p(), and so for all z ∈ bec(P ), bec(P �) = state(bec(P ))z = {p}∗. For class Q�,
note that bec(Q�)= state(bec(Q))�q� = {q}∗.

According to [1] we should be able to change the state of instance variables in P and Q to
obtain these new classes. But since P and Q have no instance variables, we must have that P = P �

and Q = Q�. Note that �p� ∈ bec(Q) but �p� /∈ bec(Q�). Therefore, bec(Q) �= bec(Q�) and Q = P , a
contradiction, and so the method fails.
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The failure occurs because in non-history based languages, the guards may only refer to instance
variables. In history-based languages such as JEEG, the guards are also able to quantify over
previous method invocations. Because this history is not captured in the object state in instance
variables, the construction fails.

We can, however, construct new classes P � and Q�, we just have to use more extreme measures.
Basically, we have to rely on the fact that every class with history-based guards has the same
behavior as another class with only normal guards and an explicit history instance variable. In
other words, we are relying on the fact that the non-history based fragment of a history-based
language is really just as powerful as the whole language.

We need to figure out how to construct, from a class P , a new class P̂ such that bec(P ) = bec(P̂ )
and P̂ has only guards that refer to instance variables. Given this new class, we may apply the
old construction and the proof procedes correctly. So, our approach is to duplicate P , but add
“logging.” That is, for each instance variable in P , we must add a list of values that the variable
has been through. Likewise, we must add a list to store when every method is invoked. Then we
must add code to P such that whenever a method is invoked, the list is updated, and whenever an
instance variable is changed, the associated list is also updated. For instance:

class P {
... ivarX = ?...
... method1(...) { ... ivarX = 2; ...; }
... guard1 ...
}
class P^ {

... ivarX = ?...

... method1(...) { ...;
ivarX = 2; ivarXList.add(2); methodList.add("method1"); }

... guard1 newGuard1Body ...
//see below

List methodList;
List ivarXlist;

}

We know that however we are going to re-write the guards, we will need access to the same
information stored in the object history. Therefore we must add a List for method invocations and
for instance variable histories, if the history-mechanism allows quantification over those.

From here we must simply re-write the guard bodies. We can take advantage of the fact that we
can essentially use the same decision procedure that was already in place; because we have stored
all the information that the runtime had access to, we should be able also use whatever technique
was in use before, but refer to the new instance variables. For instance,

class P {
method p() {}
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guard p when lastEvent == p || null
}

class P^ {
List methodList;
method p() { methodList.add("p"); }
guard p when methodList.get(methodList.size()-1) == "p" || null

}

In this example, the language runtime would implicitly be executing something equivalent to

methodList.get(methodList.size()-1) == "p" || null}

when it evaluates the guard for p in class P .
It is easy to see that this procedure produces new classes equivalent to the old ones. Also note

that an explicit appeal to the already existing decision procedure for method guards by the runtime
is not needed. Because an object’s history is finite, it is easy to write a decision procedure that is
guaranteed to halt.

By showing that classes P � and Q� exist, via their construction from P̂ and Q̂, the proof of
Lobel’s theorem may continue. The proof resumes by applying this result to specially constructed
classes P and Q to demonstrate a case of non-behavior preservation with respect to TypesT , thus
establishing Lobel’s theorem by contradiction.

2.3 Discussion

Both tweaks are incremental improvements and extensions to the work in [1]. The first tweak is
instructive in that even in [1], there is not an explicit proof of behavior preservation for a specific
language. The proof is based on the assumption that the state of an object is captured completely
by its instance variables and method invocation history; therefore, if a language is history-based
with guards but violates this assumption (see related work), then this proof will fail. Fortunately,
most history-based guard languages conform to this assumption.

The second tweak relies on the non-history based subset of a history-based language to create
classes that allow the proof in [1] to resume. In a sense, this result is unsurprising because a
history-based guard language is really a superset of a guard-based language, and because the non
history-based subset is already known to allow the assumption to hold, it follows that the whole
language will allow the assumption to hold because adding a history isn’t really adding information
a class can’t maintain for itself. So, a history really isn’t a meta-level construct that would allow
for non-behavior preservation. Note, however, that is is relatively easy to allow guards to become
truly meta-level constructions; this is discussed in the related work.

2.4 Related Work and Future Directions

A separate formal treatment of the state partitioning anomaly with guards todo this may be found
in [13].
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The method in [1] does not depend on a specific semantics for inheritance. However, there is
current work on concurrent, object-oriented formal systems with specific semantics that has run
into the anomaly [12].

Many proposals for avoiding the anomaly have been proposed over the years. Typically, the
language is presented as solving many examples of the inheritance anomaly but no formal proof is
given. In general, these proposals tend to be overly optimistic. A few proposals may be found in
[7] and [8], and a good overview in [5]

Just as this work is an extension of the work on guard based languages in [1], there are many
extensions of history-based guard languages that would be interesting to analyze. Two languages
are discussed below.

An extension of a history-based guard language with “access guards” is presented in [10]. In
this language, each method has a corresponding guard that may refer to instance variables and the
object’s invocation history. However, the guard may also contain an access modifier:

• Observe: In this mode, other processes may also observe the attributes of the object, however,
no process can change the attributes.

• Weak exclusion: Any access to the object is done as an atomic transaction.

• Strong exclusion No other access to the object is allowed until either the current guard is
evaluated to false or the current method execution is complete.

In short, this language allows for multiple threads to be executing inside of an object at one time,
and the access guards control how this concurrency works. In our analysis, only one thread may
be allowed inside of an object at one time, in a way somewhat equivalent to their strong exclusion.
To analyze this language, one would need to extend the work on intra-object concurrency found in
[1]. This is partially done in chapter 2.

Another language, proposed in [11], reverses the relationship between methods and guards
to allow for a form of incremental inheritance. That is, rather than associating each method
with a guard, the language associates a guard with some number of methods. In this language,
synchronization has the form:

property P : enables method
property Q : disables method
property Z : enables all-except method

It seems like most of this language could be translated into a regular history-based guard language
by taking, for each method m, the conjunction of the properties that enable that method and the
negation of the properties that disable it and using this as the method guard for m. However, the
all-except method is problematic; it affects derived classes. If a superclass declares a property
that enables all-except m, then methods in subclasses are also enabled by this property. So in a
very real sense, this is a truly meta-level mechanism that is not behavior preserving [1]. In addition,
different ways of resolving conflicts between guards, i.e. if one property enables a guard and another
disables it, may lead to languages with different properties.

Behavior preservation may not necessarily be bad; in some cases it may be advantageous to
drop behavior preservation in exchange for more expressive synchronization mechanisms, and so an
analysis beyond the extremely minimal treatment in [1] of this language would be quite useful.
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2.5 Conclusion

This chapter presents two modifications to the work in [1] that allow the mechanisms therein to
be applied to history-based guard languages. The first tweak establishes that history-based guard
languages are, in fact, behavior preserving with respect to TypesT . The second tweak fixes a small
gap in the proof that languages cannot be both behavior preserving with respect to TypesT and
anomaly-free with respect to TypesR, thereby allowing the main result of [1] to be applied: history-
based guard languages are behavior preserving with respect to TypesT and are therefore not anomaly
free with respect to TypesR.
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Chapter 3

Intra-object Concurrency

In the cornerstone formal analysis, every object was assumed to only allow one thread to be
executing inside it at any time. For many languages, including most industrial-strength languages
like Java and C++, objects may have multiple threads executing in them at once and have method
invocations overlap in time. This chapter takes the suggestion in the cornerstone work and develops
a notion of intra-object concurrency.

3.1 Methods and Messages

We examine internal concurrency by changing the domain of message sequences, as suggested in
[1]. Before, message sequences consisted of methods; that is, for message sequence u, u ∈ Keys∗.
Now, we must create a new set Keysintra so that for every key ∈ Keys, we now have keys, keye ∈
Keysintra. That is, the domain of Keysintra is no longer methods, but messages denoting the start
(keys) and end (keye) of method invocations. From this point forward, message and method will
have distinct meanings; methods are found in classes and method sequences, and messages are
found in message sequences.

Also note that we may now apply our old notions of typing to these new message sequences,
as shown in [1]. That is, when A and B are sets of message sequences, a subtyping relation � is
defined exactly as before, but using Keysintra instead of Keys. The full details are described in [1],
but the mechanism is simple: simply draw keys from Keysintra rather than Keys. Note that we
are also using the assumption that message sequences must have some correspondence with reality:
in any message sequence u, for any m ∈ Keys, there can not be an me ∈ u without a corresponding
ms ∈ u earlier in the sequence. This assumption precludes sequences that cannot be the trace
of any possible execution of an object, for instance, with the Buffer class, �gete, gets� is clearly
non-sensical and is prohibited. This assumption is used occasionally in the definitions that follow.

Definition 3.1.1 (Methods from messages). Let u be a sequence of messages, and m a method.
Then m ∈ methods(u) if and only if ms ∈ u or me ∈ u. Thus, methods(u) denotes all the methods
that are mentioned in u.

Let S be a set of message sequences. Then Methods(S) =
�

s∈S methods(s). Note that we
differentiate Methods from methods only by capitalization. As Methods is a straightforward
generalization of methods, this nomenclature seems reasonable.
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Because of the previous definition of Methods for a set of sequences of methods in [1], the
function Methods is effectively overloaded – given a set of either message or method sequences, it
will return the methods mentioned in the sequence. Context will always make clear which version
of Methods we are using.

With this distinction between messages and methods made, we may now begin to define more
expressive synchronization constructs.

methods: Keys∗intra → P(Keys)
Methods (new): P(Keys∗intra) → P(Keys)
Methods (old): P(Keys∗) → P(Keys)

Figure 3.1: Functions for Methods.

3.1.1 New synchronization constructs

Because intra-object concurrency allows for more expressive synchronization constraints, we would
like to examine intra-object concurrency constraints in detail in order to discover how they generate
inheritance anomalies. (To see that intra-object concurrency allows for more expressive constructs,
note that interleaving two methods line-by-line is impossible without intra-object concurrency,
whereas it is relatively easy to force atomic method execution with intra-object concurrent con-
structs. In fact, it is usually the case that the concurrent constructs available for intra-object
concurrency are a superset of atomic method constructs. This section begins our analysis of these
new synchronization constructs.

Definition 3.1.2 (Subsequence). Let u be a sequence of messages. Then u[n, m) denotes the sub-
sequence of u between indices n, inclusive, and m, exclusive. For instance, if u = �m1,m2,m3,m4�,
then u[0, 2) = �m1,m2�. Note that index 0 represents the first element of a sequence.

The notion of a subsequence is straightforward. We use it to define how often a method has
occurred:

Definition 3.1.3 (Method count). Let u be a sequence of messages. Then the count of a message
m at index n, denoted count(m,u, n) is the number of times m occurs in u[0, n+1). Note that this
count includes the index n.

The method count of a sequence is also straightforward. It is needed primarily to define active
methods.

Definition 3.1.4 (Active methods). Let u be a sequence of messages. A method m is active with
degree k at index n, denoted k = active(m,u, n), is defined as active(m, u, n) = count(ms, u, n)−
count(me, u, n). The degree of activity is the difference between the count of ms and the count of
me.

Intuitively, a method m is active (degree > 0) at index n if there is still an invocation of m

that has not yet completed. Note that by our sanity condition on message sequences the degree
of a method can never be less than zero. We may use this definition to define when methods are
mutually exclusive.
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Definition 3.1.5 (Mutual Exclusion). Let p and q be methods, and u a sequence of messages.
Then methods p and q are mutually exclusive in u, written mutex(p, q, u) if and only if ∀n ≤ |u|
(p �= q ∧ active(p, u, n) + active(q, u, n) ≤ 1) ∨ (p = q ∧ active(p, u, n) ≤ 1). (A method may be
mutually exclusive with itself if only one invocation of it is active at a time.) For example, in
�ms,me, ns, ne�, methods m and n are mutually exclusive, and in �ms,me,ms,me, m is mutually
exclusive with itself. In the sequence �ms, ns,me, ne, no methods are mutually exclusive.

Let S be a set of message sequences, and p, q ∈ Methods(S). Then p and q are totally mutually
exclusive in S, denoted Mutex(p, q, S) if and only if ∀u ∈ S, mutex(p, q, u). For example, if S =
{�ms,me, ns, ne�, �ms,me,ms,me�}, we have Mutex(m,m, S) and Mutex(m,n, S.

For a sequence of messages, two methods are mutually exclusive if there is no point in the
sequence where they are both active – both methods being active would indicate that both methods
are executing simultaneously. In the case of a set of message sequences, two methods are mutually
exclusive if they are mutually exclusive in each message sequence.

subsequence : Keys∗intra × N× N → Keys∗intra

active: Keys×Keys∗intra × N → N
mutex : Keys×Keys×Keys∗intra → B
Mutex : Keys×Keys× P(Keys∗intra) → B

Figure 3.2: Newly defined functions for intra-object concurrency.

3.1.2 Synchronization, Methods, and Messages

We would like to see how our definitions of methods and messages are related. In [1], methods
always ran to completion before another method could begin. Therefore we can represent a sequence
of methods in the old system (Keys∗) as an equivalent sequence of messages in the new system
(Keys∗intra) such that every method sequence is a message sequence with maximal mutual exclusion.
This section defines this concept.

Definition 3.1.6 (Projection). Let u be a sequence of methods. That is, u ∈ Keys∗. Then the
projection function that maps u into the domain of message sequences, denoted µ�(u), is defined
as follows. Let m be a method and let α and β be method sequences. (Note that αβ is the
concatenation of α and β.) The definition of µ� is given by:

µ�(��) = �� and
µ�(�m�) = �ms,me� and
µ�(αβ) = µ�(α)µ�(β)

Furthermore, let S be a set of method sequences. Then the projection function µ of S into the
domain of sets of message sequences is defined as µ(S) = {µ�(u) | u ∈ S}. Note that |µ(S)| = |S|
(i.e. the sizes of S and µ(S) are the same), and that there is straightforward a bijection between
µ(S) and S, namely u ⇔ µ�(u).

Intuitively, the projection function µ� maps sequences of methods into sequences of messages
such that every method in u is totally mutually exclusive to all other methods in the projected
sequence. For example, µ�(�α, β, γ�) = �αs,αe,βs,βe, γs, γe�.
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The projection function µ extends this definition to sets of method sequences in a straightforward
way. For instance, if S = {�α�, �β, γ�}, then µ(S) = {�αsαe�, �βs,βe, γs, γe�}. We may now formalize
some properties of projection.

Proposition 3.1.7 (Bijection). Let u be a sequence of methods and S a set of method sequences.
Then u ∈ S if and only if µ�(u) ∈ µ(S).

Proof. This property stems from the bijective nature of µ.
First, let u ∈ S. By construction, µ�(u) ∈ µ(S).
Secondly, let µ�(u) ∈ µ(S). Then by construction there must be some u ∈ S such that µ�(u) ∈

µ(S) (there is simply no other way for µ�(u) to appear in µ(S)); therefore u ∈ S.

Also note that it is possible to define µ−1 and µ�−1; however, these are necessarily partial
functions. That is, they are undefined on message sequences and sets of message sequences that
cannot be constructed via projection. Therefore, in the proofs that follow we will write “there must
exist a sequence in the pre-image of µ(S)” rather than using either µ−1 or µ�−1 directly.

Proposition 3.1.8 (Equivalence). Let S be a set of method sequences. Then Methods(S) =
Methods(µ(S)). (Note that we are using both definitions of Methods here.)

Proof. Let m ∈ Methods(S). Therefore there exists a u ∈ S such that u = �. . .m . . .�. Therefore
µ�(u) = �. . .ms,me . . .�. By proposition 3.1.7, µ�(u) ∈ µ(S) and hence m ∈ Methods(µ(S)). The
other direction follows similarly.

We are now in a position to define maximal mutual exclusion and show how this property
interacts with projection: because of the way in which method sequences are projected as message
sequences, the new message sequence always has maximal mutual exclusion.

Proposition 3.1.9 (Maximal Mutual Exclusion). Let S be a set of method sequences. Then
∀p, q ∈ Methods(µ(S)), mutex(p, q, µ(S)).

Proof. Let u ∈ µ(S). By construction of µ�, whenever a ms appears in u it is immediately followed
by a me. Therefore no distinct methods are active at the same time, and only one invocation of m

may be active at one time.

µ� : Keys∗ → Keys∗intra

µ : P(Keys∗) → P(Keys∗intra)

Figure 3.3: Projection Functions.

3.2 New Types

Our goal is to use this newly developed machinery to define various new notions of typing that will
be useful when we examine the inheritance anomaly for intra-object concurrency. Note that it is
possible to define new, useful types without the specific mechanisms we developed – this path is
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simply one option out of many, although this path is not entirely arbitrary. The motivations for
these choices of typing are explained in each subsection.

The general approach suggested by this section is to take a commonly used synchronization
mechanism and formalize how the mechanism behaves by examining the traces of objects that use
this mechanism. For instance, in the first section below that defines TypesS , the notion of method
guards is formalized as mutual exclusion between methods. Other synchronization constructs,
for instance semaphores, can be formalized in the same way, although it has been this author’s
experience that the properties on traces required to define more complex synchronization constructs
quickly become extremely complex. In short, what is needed is a general theory of synchronization
based on object-traces in the spirit of CSP.

Also note that it is possible to “work backwards” and “distill” interesting notions of subtyping
by examining arbitrary sets of message sequences. However, these notions need not correspond
to anything in reality since they are generated by arbitrary traces, and arbitrary traces may not
be generated by real-world synchronization constructs. (Of course, these distilled notions may be
interesting in their own right.) One way to implement this approach is to ask the following question:
given a set of message sequences S, what is the set of predicates P such that ∀p ∈ P, s ∈ Sp(s)?
With P known, any p ∈ P may correspond to a synchronization property. The difficult part is to
determine which p’s should be further examined. We do not take this more unorthodox approach
here.

3.2.1 Mutual Exclusion: TypesS

Our first notion of subtyping is based purely on synchronization expressed through mutual exclu-
sion.

Definition 3.2.1 (TypesS). Let Super and Sub be sets of message sequences. Then Super �S Sub

if and only if ∀p, q ∈ Methods(Super), Mutex(p, q, Super) → Mutex(p, q, Sub).

Intuitively, we have that Super �s Sub if and only if whenever two methods are totally mutually
exclusive in Super, they are totally mutually exclusive in Sub.

However, before we may analyze TypesS , we must first establish that�S is, in fact, a preordering
[1]. To do so we must show that it is reflexive and transitive.

Proposition 3.2.2. �S is a preordering.

Proof. Reflexivity is obvious from the definition.
To prove transitivity, let A �S B and B �S C. We must show that A �S C. That is,

that ∀p, q ∈ Methods(A), Mutex(p, q, A) → Mutex(p, q, C). Let p, q ∈ Methods(A), and assume
that p and q are totally mutually exlusive in A. Because A �S B, they are totally mutually
exclusive in B. And since p and q are totally mutually exclusive in B, because we have B �S C,
we have that p and q are totally mutually exclusive in C. Therefore we have established that
Mutex(p, q, A) → Mutex(p, q, C).

Of course, there are legitimate situations where we might want a subclass to disregard the
mutual exclusion properties of its parent, but this possibility is not explored here.
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Finally, note that there is no possibility of “accidentally” identifying methods as mutually
exclusive. That is, when we examine the anomaly we use sets of message sequences as behavior sets
for objects, and behavior sets for objects contain every possible trace of that object, not just traces
that happen during any particular execution. So, if it is possible for an object to run two methods
concurrently, then there will be a message sequence in the behavior set of that object where that
happens, and therefore our mutual exclusion property, which must hold for every trace in an object,
will fail for that object. Hence, no methods will be identified as mutually exclusive that are not,
in fact, mutually exclusive. Note, however, that two methods being mutually exclusive in a set
of traces does not necessarily imply that any class with that behavior will have synchronization
code between those two methods. Thus, our definition of mutually exclusive is solely based on
traces, and not on synchronization code. In this sense, methods may be “accidentally” identified as
mutually exclusive without there being synchronization code between them if the mutual exclusion
in the traces comes from a different property of the class’s code.

Remark. Our notion of TypesS is, in a way, a formalization of the following maxim: a
subclass should only further restrict the synchronization properties of its parent. We have only
the machinery to do this for mutual exclusion, but machinery for other synchronization constructs
could be developed. In a sense, restricting synchronization in subclasses “feels right.” So much
so, in fact, that this notion has been independently developed here and in other papers, most
notably [15]. In this paper, the authors argue that subtypes must only restrict the synchronization
behavior of their parents through the use of additional negative guards. Negative guards have the
form “disable method m when p”, and by allowing subclasses to only add negative guards, it can be
guaranteed that subclasses only restrict synchronization behavior. That is, if a method is disabled
in a superclass during a given run, it should also be disabled in a subclass during the same run. One
potential benefit of this approach is that common synchronization code can then be factored up the
inheritance hierarchy. Interestingly for us, there is also a discussion in this paper as to what extent
languages using this proviso generate subtypes via inheritance; the paper’s authors say that their
approach entails inheritance not leading to subtyping, but they are not working within the same
subtyping framework as we are. In our terms, their constructs would guarantee subtyping, except
that they allow a “disable all methods except x” construct which essentially forces inheritance
to become not behavior preserving. As repeated discovery of a concept usually implies there is
some substance to it, we take this as an indication that this path toward understanding intra-
object concurrency can be a fruitful one. Unfortunately, the paper itself did not clear up the issues
regarding the anomaly way [1] did, although it seems like pushed further, the paper could have.

The Inheritance Anomaly in TypesS

Before we may examine the inheritance anomalies in TypesS , there is an important issue created
by intra-object concurrent that needs addressing. In our earlier notion of concurrency, where
methods were always atomic, a method was not considered to be executing until the synchronization
constructs guarding the method were true. That is, evaluation of method guards was not part of
the execution of the method. Therefore, the following two code snippets would generate identical
sets of traces:

class Buffer {
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List list;
void push when list.size() < MAX { ... }
Object pop when list.size() > 0 { ... }

}

and

class Buffer {
List list;
synchronized void push() {

while (list.size() == MAX) {
wait();

}
...

}
synchronized Object pop() {
while (list.size() == 0) {

wait();
}

}

In the second code snippet, the use of the while-wait construct is essentially the use of a method
guard. In analyzing code in Java-like languages, for all intents and purposes, a method is not con-
sidered to be executing until the while-wait construct falls through. This convention is adopted
because semantically, these explicit method guards and the use of while-wait are identical. Treat-
ing these two cases identically leads to no problems and is quite handy.

However, in dealing with intra-object concurrency, treating these two cases the similarly must
be adopted by fiat rather than based on an argument like above. This is because it is clear that a
method guard evaluating does not lead to the start of a method because method guards may be
evaluated many times before becoming true and a method may only start once. Therefore, traces
from snippet one look something like this:

� guard evaluates to false N times and then true once ms,me�

However, when using while/wait, it seems reasonable that traces from the second snippet could
look like this:

�ms, while evaluates to false N times and then falls through me�

. In other words, in the second snippet, we can view the while-wait as part of the method body.
This view is justified because, after all, the while-wait code is, in fact, inside the method.

Thus we are faced with a choice: to consider these while-wait constructs as method guards
proper (the identical approach), and by convention treat snippets one and two the same even
though control has reached into the body during evaluation, or two differentiate the two cases (the
differentiating approach). A priori there is no real reason to consider one approach superior to
the other; differentiating the cases leads to an enhanced ability to distinguish between guard-based
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and Java-like languages and treating them the same leads to a unification of semantic concepts
that allows us to treat more languages uniformly. For the purposes of illustrating the inheritance
anomaly below, we will treat while-wait constructs as method guards – we will take the identical
approach – because it makes it easier to see occurrences of the anomaly. This is because we end
up with “extra” traces when take the differentiating approach. That is, for every trace of the
form �..., pops, pope...� in the identical approach, there are many other traces in the differentiating
approach, where the pops is “slid” to left different amounts. That is, in the identical approach, pops

occurs as far to the right as possible; that is, when the guard finally evaluates to true. But in the
differentiating approach, pops occurs whenever the guard is first evaluated, which is by definition
a larger set of positions than when the guard evaluates to true. So, if we take the differentiating
approach, then we will have extra traces that correspond to the same semantic behavior. These
extra traces make it more difficult to illustrate the anomaly, as it becomes impossible to reason
about where a ms must occur.

Unfortunately, the two different approaches lead to different sets of traces for object behaviors
in Java-like languages, and therefore lead to different instances of the inheritance anomaly. This is
simply the price we must pay for analyzing more expressive systems of concurrency. Studying the
relationship between the two approaches in terms of the anomalies found in only one or in both is
an interesting area for further study.

With that unpleasantness out of the way, we may proceed with an example of the anomaly in
TypesS , and because TypesS is a relatively broad definition it is relatively easy to come up with
examples. I have dubbed one class of anomalies that comes up immediately Enabling Anomalies.

Example 3.2.3. Consider a Buffer class, written in a Java-like language:

class Buffer {
List list = new List();
synchronized Object pop() {

while (list.size() == 0) {
wait();

}
return list.remove(0);

}
synchronized void push(Object o) {

list.add(o);
notifyAll();

}
}

Note that, as described above, we treat the wait statements are method guards; that is, reaching
the point of waiting does not count as beginning the invocation of the method.

It is clear that pop and push are mutually exclusive because of the synchronized keyword. In
an anomaly-free behavior-preserving language we expect that for any subtype of Buffer we would
be able to create, through incremental inheritance, a class that implements that subtype and vice
versa. Moreover, any subtype of this class, with respect to TypesS , must have this mutual exclusion
property of push and pop. One such subtype is the type generated by the subclass EnablingBuffer:
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class EnablingBuffer extends Buffer {
boolean enabled = false;
synchronized Object pop() {

while (!enabled) {
wait();

}
return super.pop();

}
synchronized void push(Object o) {

while (!enabled) {
wait();

}
super.push(o);

}
synchronized void enable() {

enabled = true;
notifyAll();

}
}

It is clear that push and pop are still mutually exclusive in EnablingBuffer because of the
synchronized keyword. Therefore, bec(EnablingBuffer) �S bec(Buffer). However, the type
implemented by EnablingBuffer is not incrementally derivable from Buffer, because at the very
least, the synchronization behavior of put and get must be changed from their behavior in the
superclass (a new variable tracking if the buffer is enabled must be added), resulting in an instance
of the inheritance anomaly.

Note that this is just one example of an enabling anomaly; it is very likely that there are other
kinds of anomaly induced by TypesS . Also note that it is likely that there are some languages that
prevent this class of anomaly.

Our next notion of subtyping strengthens TypesS to prevent anomalies like above.

3.2.2 Mutual Exclusion and Containment: Types�S

Definition 3.2.4 (Types�S). Let Super and Sub be sets of message sequences. Then Super ��
S Sub

if and only if Super �S Sub and Super ⊆ Sub.

As always, we must check that ��
S is a preordering:

Proposition 3.2.5. ��
S is a preordering.

Proof. Reflexivity of ��
S follows from the reflexivity of ⊆ and �S . Likewise, transitivity also follows

from the transitivity of ⊆ and �S .

Notice that this definition of subtyping prevents the EnablingBuffer anomaly. This is because
we do not have that bec(Buffer) ⊆ bec(EnablingBuffer). For example, let u = �puts, pute, gets, gete� ∈
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bec(Buffer). Because every sequence in bec(EnablingBuffer) must begin with �enables, enablee�,
we have u /∈ bec(EnablingBuffer).

However, Types�S is vulnerable to its own class of anomalies. Some of these anomalies stem
from being able to modify the semantics of the subtype.

Example. Consider another subclass of Buffer:

class GenerousBuffer extends Buffer {
synchronized void put(Object o) {}
synchronized Object get() {return null;}

}

It is clear that put and get are both still mutually exclusive in this subtype because of the
use of the synchronized keyword. Moreover, because GenerousBuffer accepts any sequence of
get and put, it is obvious that bec(Buffer) ⊂ bec(GenerousBuffer). Therefore, we have that
bec(Buffer) ��

S bec(GenerousBuffer), but we cannot incrementally derive from Buffer to get a
class that behaves like GenerousBuffer because to do so requires modifying the synchronization
constraints of get and put. Of course, some languages may be immune to this type of anomaly.
(One example would be a language that would allow us to initialize the buffer to contain an infinite
sequence of nulls. In that case, any sequence of calls to get and put would be allowed.)

This notion of subtyping is anathema to our usual intuition of subtype. That is, this subclass is
too different from the superclass for us to really allow this as a genuine instance of the inheritance
anomaly. Therefore, rather than using Types�S , we will take our “usual” notion, TypesT , and
restrict it by adding this synchronization property of TypesS� .

3.2.3 TypesT,S

Definition 3.2.6 (TypesT,S). Let Super and Sub be sets of message sequences. Then Super �T,S

Sub if and only if Super �T Sub and Super �S Sub. Note that we are using �S rather than �S�

because �T entails containment, making the use of �S� redundant.

Intuitively, we have Super �T,S Sub when we have two separate properties:

1. Super �T Sub, so that the Sub object behaves exactly like a Super object until a message
not in Super is received, and

2. Whenever two methods are mutually exclusive in Super, they are mutually exclusive in Sub.
That is, Sub does not violate the mutual exclusion properties of Super, even after a new
message is received.

Intuitively, this definition of type captures many behaviors we would like to model. For instance,
if a HardDisk class enforces mutual exclusion between methods read and write, then we would
want a subclass to also not to allow reads during writes, and vice-versa, at any time – including
after using functionality not found in HardDisk. Note that TypesT,S captures this notion much
more so than TypesS does. As always, however, there may be some situations where this definition
of subtyping is inadequate.

However, before we can analyze TypesT,S , we must first establish that is is a notion of subtyping
by showing that it is a preordering:
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Proposition 3.2.7. �T,S is a preordering.

Proof. Reflexivity is obvious from the definition of �T,S . To prove transitivity, let A �T,S B and
B �T,S C. A �T C follows from transitivity of �T [1], and A �S C follows from the transitivity of
�S .

At first glance it is not immediately obvious that TypesT �= TypesS – that is, it is not ob-
vious that TypesT must be different from TypesT,S . Consider a new set of message sequences
BrokenBuffer such that Buffer ⊂ BrokenBuffer and with the follwing property: for every α ∈
Buffer and β ∈ {gets, puts}∗, there is a z ∈ BrokenBuffer such that z = �α, breaks, breake,β�.
(Technical note: α and β must be finite, so this concatenation is allowed.) That is, BrokenBuffer

behaves like Buffer until message break is received, at which point it will accept any sequence
of gets and puts. Clearly, because of this, get and put are not synchronized in BrokenBuffer,
and so BrokenBuffer is not a subtype under TypesS . However, BrokenBuffer a valid subtype
under TypesT . Hence, TypesS �= TypesT . (Also note that for a more realistic example, rather
than drawing β from {gets, puts}∗, we could instead draw β from sane, in the sense of section 1,
sequences from {gets, puts, gete, pute}∗ and obtain the same result.)

There is an interesting relationship between TypesT,S and our projection functions. The rest
of this section explores this relationship.

Proposition 3.2.8 (Methods to Messages Homomorphism). µ is a homomorphism with
respect to �T,S and �T when moving from the methods domain to the messages domain.

Proof. Let Super and Sub be sets of method sequences. Suppose Super �T Sub. We must show
that µ(Super) �T,S µ(Sub). This requires showing that µ(Super) �T µ(Sub) and µ(Super) �S

µ(Sub).
We now prove part 1. We know that Super �T Sub, and we wish to show that µ(Super) �T

µ(Sub). We must show that µ(Super) ⊆ µ(Sub) and for every message sequence u ∈ µ(Sub),
u = vz for some v ∈ µ(Super) and some z, possibly empty, such that the first element of z, if it
exists, never occurs in any sequence of µ(Super).

First we establish that µ(Super) ⊆ µ(Sub). Let u ∈ µ(Super). We wish to show that u ∈
µ(Sub). By construction of µ(Super), there is some sequence u� ∈ Super such that µ�(u�) =
u. Because Super �T Sub, we know that Super ⊆ Sub, and thus that u� ∈ Sub. Therefore
µ�(u�) ∈ µ(Sub) (by Proposition 3.1.7) and as u = µ�(u�), we have u ∈ µ(Super) and hence
µ(Super) ⊆ µ(Sub).

Lastly we must establish that for every message sequence u ∈ µ(Sub), u = vz for some v ∈
µ(Super) and some z, possibly empty, such that the first element of z, if it exists, never occurs in
any sequence of µ(Super). Let u ∈ µ(Sub). There are two cases:

1. u ∈ µ(Super). Then z = �� and v = u.

2. u /∈ µ(Super). By construction of µ(Sub), there is some u� ∈ Sub such that µ�(u�) = u. Note
that u� /∈ Super (if it were, we’d have u = µ�(u�) ∈ µ(Super), violating our assumption).
So, because u� /∈ Super, since Super �T Sub we know that u� = v�z� for some v� in Super

and some z�, such that the first element of z� never occurs in any sequence of Super. By
applying µ� to u� = v�z� we obtain u = µ�(u�) = µ(v�z�) = µ(v�)µ(z�). That is, u = µ(v�)µ(z�)
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where v� ∈ Super and z� starts with a method not in Super. By proposition 3.1.7, Because
v� ∈ Super, µ(v�) ∈ µ(Super), and because z� /∈ Super, we have, µ�(z�) /∈ µ(Super).

This proves part 1.
We now prove part 2, that ∀p, q ∈ Methods(µ(Super)), Mutex(p, q, µ(Super)) → Mutex(p, q, µ(Sub)).

Let p, q ∈ Methods(µ(Super)) and suppose that Mutex(p, q, µ(Super)). We must show that
Mutex(p, q, µ(Sub)). Because we have Super �T Sub, we know that Methods(Super) ⊆ Methods(Sub).
It follows from proposition 3.1.7 that Methods(µ(Super)) ⊆ Methods(µ(Sub)). Thus, p, q ∈
Methods(Sub). By proposition 3.1.9 we have maximal mutual exclusion and hence we know that
∀a, b ∈ Methods(µ(Sub)), Mutex(a, b, µ(Sub)). Therefore, we have that Mutex(p, q, µ(Sub)) holds,
and we have proven part 2.

Essentially, TypesT,S is the first new notion of subtyping that feels correct. TypesT,S is a more
restrictive notion that TypesT , and so we analyze it to generate new anomaly types.

The Inheritance Anomaly in TypesT,S

✲µ

✫✪
✬✩
�T

✫✪
✬✩

�S

✫✪
✬✩�T

♥
�T,S

Figure 3.4: Relationship between Methods and Messages. The domain on the left is pairs of sets
of method sequences; on the right, pairs of sets of message sequences.

3.3 Conclusion and Related Work

Placeholder.
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Chapter 4

Conclusion

Stepping back and viewing this work in a broader scope has led me to the following conclusions:

• The relationship between inheritance and subtyping is still not fully understood. Mainly, the
problem of open recursion still leads to debate in the community as to whether or not it is
a great idea or a terrible one. Open recursion is the term for allowing subclasses to override
methods, which in effect means that code written in a supertype is now dependent on code in
a subtype. To fans of well defined control structures, this is anathema. But it does seem to
capture some common scenarios in OO languages miraculously well. I believe that a better,
more structured but still powerful method is needed as part of the next step for the evolution
of OO languages away from arbitrary open recursion. You could say that the OO community
needs a “goto considered harmful” type of paper to address open recursion.

• It is extremely difficult to tell if further classification of the anomalies is useful. Lobel’s orig-
inal classificaton of the anomalies was quite useful because it categorized all of the examples
present in the literature. The classification appears natural, and it seems like there is little
to be gained from increasing the precision of the taxonomy. For intra-object concurrency, the
situation is reversed. Here, there are no examples from the literature driving a classification
system; any classification system must essentially start from scratch, and the goal must be
to discover useful properties about the anomalies independently of how the anomalies are
encountered in practice. Thus, this work is open ended, and its usefulness may therefore be
questioned.

• State-aware type systems are becoming ever more important. A state-aware type system seems
almost like a contradiction in terms. But if there is one thing that the inheritance anomaly
shows us, it is that most people think of type systems, in a concurrent setting, in terms of
state; that is, a concurrent object’s subclasses should behave like the superclass, which is a
property on state. I therefore believe that the single most useful research direction suggested
by this work is to determine the limits to which this notion of behavioral, concurrent subtyping
can be expressed in a type system. Especially as concurrent programs become more common,
programmers will demand better type systems to help avoid problems like the anomaly.
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Chapter 6

Related Work

This chapter provides short summaries of various papers that have had even the slightest impact
in this work. For instance, there are a number of papers on concurrent formal systems; these works
are included because it is believed to be possible to characterize this anomaly in terms of a formal
system. The papers are broadly categorized. The bibliography has references where some of these
papers (and every paper cited) may be found.

6.1 Core Papers

• Jeeg: A Programming Language for Concurrent Objects Synchronization. G. Milicia and V.
Sassone. This paper introduces the java dialect Jeeg, which provided the motivation for
examining history-based guard languages. It contains a brief description of the inheritance
anomaly and a classification for some of the anomaly types. In a certain sense, Jeeg’s use of
sync blocks is reminiscent of aspect-oriented solutions to the anomaly. Most of the paper is
spent describing the temporal logic used in method guards and showing that this technique
is powerful enough to describe all star-free regular states of a given object. Their belief is
that because these star-free states are definable using method guards, it is impossible for the
anomaly to occur in classes where the states of the objects of that class can only be star-free.
In practice, this simply means that there is a separation between concurrency constructs and
other language constructs; in [1], this is not considered to be a solution to the anomaly. An
interesting extension of this work would be to further characterize how objects with star-free
states behave.

• Classifying Inheritance Mechanisms in Object-Oriented Programming. L. Crnogorac et al.
This paper is one of a series of papers that culminate with Lobel’s thesis. This paper is
interesting in that it spends more time examining the nature of typing from an informal
viewpoint itself than in further works. Most of the notions used in the thesis and in this work
can be traced back to this paper.

• Inheritance Anomaly: A Formal Treatment. L. Crnogorac et al. This is another paper in the
series of anomaly papers that culminate with Lobel’s thesis. This is by far the most formal
of the papers, examining typing in a very formal way.
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• Formal Analysis of Inheritance and Specialization L. Crnogorac. This is the Ph.D. thesis
that is the culmination of the series of papers investigating the anomaly. Its first section is
the clearest introduction to the formal framework; its analysis of typing is not as in-depth as
some of the other papers, indicating a refinement of the idea over time. The second half of
the thesis is an investigation, via this framework, into the properties of a language developed
for the AI field that minimizes the anomaly. In fact, it was the occurrance of the anomaly in
heavily inheritance-based and concurrent agent systems that was the motivation behind this
approach to understanding the anomaly.

• Synchronization Constrains With Inheritance: What is not Possible–so what is? A. Yonezawa
et al. This paper is one of the few other formal treatments of the anomaly aside from
Crnogorac’s. The authors of this paper originally identified the inheritance anomaly; this
paper is also one of the very first formal analysis of the anomaly. In many ways, Lobel’s first
paper can be considered an extension of this one. Many of his formalisms, for instance beh,
are drawn from this paper, as are the roots of state-based semantics. Lobel’s development of
a general cause for the anomaly is in many ways a generalization of this paper’s treatment
of the anomaly for accept sets. A proof that the anomaly exists in accept-set languages is,
along with the formalization, the main contribution of this paper. Lobel’s treatment stands
very much independently, however.

• A Behavioral Notion of Subtyping. B. Liskov et al. This classic paper introduces the “subtype
requirement”: Let φ(X) be a property provable about objects x of type T . Then φ(y) should
be true for objects y of type S when S is a subtype of T . A related notion has often been
dubbed the “Liskov substitution principle.” Liskov is interested mostly in safety properties
such as invariants or history properties; this definition of subtyping is the foundation on
which Lobel’s notion of subtyping is based, which is to say that Liskov presents two notions
of subtyping that obey this property, and Lobel’s various notions of subtyping also obey this
property.

6.2 Concurrent Formal Systems

• Inheritance in Concurrent Objects. C. Laneve. This paper introduces a concurrent process
calculi that models inheritance and that is strong enough to model languages using enabled
sets and method guards. A variety of interesting synchronization and record constructs
are discussed. An example of the inheritance anomaly translated into the process calculus is
presented, and an in-depth formal treatment of how the anomaly manifests itself is presented.
The papers also gives various philosophical arguments for the position that the anomaly is
not something that should be expected (i.e. the anomaly is a problem). In addition, there
are intuitive connections between this work and other works that have found that neither
method guards nor enabled sets are strong enough to solve the anomaly.

• Inheritance in the Join Calculus. C. Laneve. This paper presents the join calculus and a way
in which inheritance may be modeled in it. In addition, it demonstrates different kinds of
inheritance anomaly (partitioning of states and history sensitive) inside the calculus.
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• Inheritance is not Subtyping. W. Cook et al. This paper draws clear the distinction between
inheritance and sybtyping, arguing that equating them leads to either restrictions on inher-
itance or inheritance relations that may not generate subtypes. They present a notion of
inheritance formulated inside a lambda-calculus that is not behavior preserving. Many terms
found in Lobel’s work are defined here; for instance, incremental inheritance. In addition, the
paper discusses the use of F-bounded inheritance, which has ramifications to more modern
languages like Java. The paper also discusses the denotational semantics of inheritance and
argues why several contemporary process calculi are not sufficient.

• A Denotational Semantics of Inheritance and its Correctness. W. Cook et al. This paper
gives a denotational semantics for inheritance and a collection of related results. It is related
to Cook’s other paper on inheritance and subtyping.

• The Reflexive CHAM and the Join-Calculus. C. Fournet et al. This paper introduces the
notion of a Chemical Machine as a notion of concurrency on par with Actors. The authors
present a join-calculus with functional and object-oriented features, along with various syn-
chronization primitives.

• A Calculus for Concurrent Objects. K. Fisher et al. This paper presents a concurrent object
calculus. The system is unique in its use of typing, and because it is λ based. The inheri-
tance anomaly is not discussed in this paper, nor is inheritance. These would be two logical
directions to take this work.

• A Concurrent Lambda Calculus with Futures. Smolka et al. This paper presents a basic
typed lambda calculus with futures. In is unrelated to object calculus but serves as a useful
contrast.

• Typed Concurrent Objects. V. Vasconcelos. This paper presents a process calculi for typed
concurrent objects that allows for a kind of polymorphism. The inheritance anomaly is not
discussed; the paper serves as an interesting bridge between Fisher’s work and Laneve’s work
(or rather, the respective “campus” of formal systems.

• Quiet and Bouncing Objects: Two Migration Abstractions in a Simple Distributed Blue Cal-
culus. S. Dal-Zilio. This paper presents the concept of migration control abstractions being
a part of a process calculi itself. As such, it might have applications to how different (say,
non-behavior preserving) synchronization can be modeled in process calculi.

• A Concurrent Object Calculus: Reduction and Typing. A. Gordon et al. This paper presents
Cardelli’s object calculus extended with synchronization primitives for mutexes. It is an
interesting example of how process calculi may be modified to suit other needs, and is also a
in-depth treatment of the calculus itself.

• Conformance and Refinement of Behavior in pi-calculus. C. Canal et al. This paper presents
a process algebra along with a mechanism for inheritance among processes. This algebra is
used to tell if a process is a refinement of another or if a process is compatible with another.
In a certain sense, traces may be viewed as processes, and so an approach like this could be

32



used to more formally define the properties examined in this thesis’s chapter on intra-object
concurrency.

6.3 Anomaly Avoidance Mechanisms

• Integrating Concurrency and Object-Orientation using Boolean, Access and Path Guards.
This paper is a good example of how researchers have thought that they were solving the in-
heritance anomaly even though they were only achieving separation of inherited code. Unlike
other papers, however, this paper presents a potentially non-behavior preserving inheritance
mechanism. The logic that it uses in its guards is very similar to the logic used by Jeeg.

• Virtual Synchronization: Uncoupling Synchronization Annotations from Synchronization Code.
S. Reitzner. This paper presents an archetypal notion of separation of concurrent code from
sequential code and a classic demonstration of how inheritance that is split into concurrent
and other parts narrows the scope of the changes that need to take place during inheritance.
The paper is interesting in that an event model is used to couple the synchronization code
from the sequential code.

• A Concurrent Abstraction Model for Avoiding Inheritance Anomaly in Object-Oriented Pro-
grams. P. Agrawal et al. This paper presents the notion of separation of concurrency concerns
with others, and presents a rich language in which concurrency can be defined. This language
includes semaphores as well as other, potentially not behavior preserving constructs. In ad-
dition, the paper shows how different types of the anomaly may be avoided in this scheme.

• Solving the Inheritance Anomaly in Concurrent Object-Oriented Programming. J. Meseguer.
This is an un-orthodox paper that takes a view opposite to Lobel: the anomaly is caused by
synchronization code, and therefore, synchronization code should be eliminated. The paper
describes how to use a special kind of re-write logic to describe concurrency in object-oriented
systems. In addition, inheritance is broken into two different mechanisms of inheritance. This
mechanism is so unusual that it is unclear to what extent the normal methods may even be
used to examine it. todo: maude in chart? if so, analysis done

• Integration of Concurrency Control in a Language with Subtyping and Subclassing. C. Ba-
quero et al. This paper describes the language BALLOON, a language which separates
inheritance from subtyping and subtyping and inheritance. This language is briefly examined
in Lobel’s thesis.

• Analysis of Inheritance Anomaly in Object-Oriented Concurrent Programming Lanaguages.
A. Yonezawa et al. This paper, although just a draft, is one of the best informal analysis of the
problems with conventional techniques for overcoming the anomly. The paper goes through
about a dozen various proposals for minimizing the anomaly and groups them according to
their mechanisms (and thus provides a taxonomy); the paper also is filled with examples of
how these proposals fail. The paper also discusses two proposals that are more unorthodox
and potentially more powerful: use of reflection and meta-level constructs (which are almost
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certainly not-behavior preserving when coupled with inheritance) and the syntactic elimina-
tion of synchronization code (i.e. use transaction). I consider the paper to be the capstone
of the early work on the anomaly.

• Abstracting Object Interactions Using Composition Filters. A. Yonezawa et al. This paper
presents the notion of “composition filters”, which are an extremely general mechanism for
specifying how functions may be composed during message passing. For example, an object
may send a message m to another object; this message would be intercepted by various filters
and be processed before being passed on. This notion of filtering can be used to create abstract
communication types, where filters allow object to be dropped in to a synchronization scheme.
Viewed in a certain way, composition filters form a synchronization mechanism which can be
studied using the formal framework, although a number of adaptations must be made because
composition filters are such an unusual and general synchronization mechanism.

• The Universe Model: An Approach for Improving the Modularity and Reliability of Concurrent
Programs. R. Stirewalt et al. This paper can be interpreted as a sort of “proto-Jeeg,” in the
sense that it shows how propositional logic may be used to constraint and examine concurrent
behavior of objects. The approach taken is to characterize various objects in the program
as part of “universes”, and various processes have control over different universes at different
times. The effect of this kind of synchronization method on inheritance is not examined,
although there is a short paragraph noting that because state changes inside objects do not
play as large a part in concurrency control as in other languages, it is possible that the
anomaly would be minimized.

• Abstracting Process-to-Function Relations in Concurrent Object-Oriented Applications. C.
Lopes et al. This paper examines abstracting away concurrent code from sequential code, but
with an eye toward freeing the programmer from having to deal with both OO-concerns and
concurrent concerns at the same time; the thinking is that OO-programming will eventually
be stymied in a concurrent environment because programmers will be spending their type on
non-OO related issues. As such, the issue of the inheritance anomaly is not raised, although
the authors argue that such an approach reduces maintanince requirements, and the anomaly
certainly contributes to maintanence costs. In short, this paper presents a general model for
abstracting concrrency and other concerns away from sequential code in a pre-aspect oriented
manner.

• (Objects + Concurrency) and Reusability - A Proposal to Circumvent the Inheritance Anomaly.
C. Lengauer et al. This paper shows how the language Maude may be used to overcome the
anomaly; in addition, the paper shows how Maude overcomes related failures of inheritance,
for instance during their new concept of “sub-configuration.” This paper is an interesting
exploration in that it uses an unusual language and views the anomaly in an unusual light.

• Guarded Methods vs. Inheritance Anomaly. S. Ferenczi. This paper argues that nested
method guards may be used to defeat the anomaly. This paper is a good example of the
necessity of a formal analysis of the anomaly, as the paper simple solves the usual examples
of the anomaly and does not prove that the mechanism solves all instances (in fact, Lobel’s
theorem tells us that if the author’s claim is true, then the inheritance mechanism used in
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the underlying language is not behavior-preserving. But the underlying language is so typical
that we can safely assume it is behavior-preserving, and so we know that method guards
used in this way do not solve all instances of the anomaly, in direct contrast to the title).
The guards may be inherited, leading to a separation of concurrent from sequential code that
helps but does not eliminate the anomaly.

• Concurrent Object-Oriented Languages and the Inheritance Anomaly. D. Kafura et al. This
is a good foundational paper that surveys existing concurrent OO languages and provides
an interesting taxonomy of these languages. Most importantly, the paper also presents the
notion of accept-sets and discusses how accept sets are used to overcome various instances
of the anomaly. The paper also has one of the best descriptions of the context surrounding
the anomaly that I’ve come across: “Can inheritance be used to organize and specialize
synchronization policies in the same way that inheritance is used to organize and specialize
an object’s functionality?” The treatment of accept sets is formal, in contrast to most of the
other papers examining accept sets.

• Inheritance and Synchronization with Enabled-Sets. C. Tomlinson et al. This paper presents
the notion of enabled sets, which are quite similar in spirit to accept sets. The paper also
provides connections with Actors, which is somewhat unusual and enlightening. This concur-
rency mechanism, when used with inheritance, is very likely to be non-behavior preserving
because of the way derived classes inherit enabled-sets of parents.

• Behavior Equation as Solution of Inheritance Anomaly in Concurrent Object-Oriented Pro-
gramming Languages. B. Leung et al. This paper argues that separating concurrent and
sequential code increases resistance to the anomaly. In addition, the notion of a behavior
equation is introduced: a class’s behavior equation describes how states may evolve and how
concurrency interacts with the object. In a sense, the equation is not unlike a hybrid of
accept sets and explicit state management. The paper also treats multiple inheritance, which
is unusual for a paper about the anomaly.

• Solving Inheritance Anomaly Problem by State Abstraction-Based Synchronization. Y. Kuno.
This paper is interesting for several reasons. First, the concept of abstracting state so that
the internal state of a data type is available from the outside in a controlled fashion is
an interesting concept related to OOP. Secondly, because of this, in their language/scheme
the type system reflects an objects synchronization behavior, which leads to an interesting
entanglement with inheritance and substitutability. Finally, this unusual scheme is pitted
against the three classic types of anomaly and shown to prevail, although a formal proof is
not given.

• Inheritance of Synchronization Constraints in Concurrent Object-Oriented Programming Lan-
guages. S. Frolund. This paper takes the insighful position that inherited synchronization
constraints should be at least as restrictive in derived classes. Such a notion is compatible
with many of this thesis’s notion of subtyping (for instance, the property that when two
methods are mutually exclusive in a superclass they are mutually exclusive in a subclass). As
such, this paper can be viewed as having the seeds for the idea that these types of constraints
should play some part in the inheritance process to make sure the anomaly does not occur.

35



Interestingly, it appears that solving the anomaly was not the primary motivation for the
paper, but this type of restricted inheritance would substantially eliminate the anomaly (at
the cost of expressiveness). The paper’s treatment of the anomaly is minimal, but the paper
does indicate that the integration of behavior notions of subtyping and inheritance were being
thought of in other contexts besides work on the anomaly. In addition, incremental inheri-
tance as a concept is examined here, and the use of guards based on patterns is somewhat
related to Jeeg and other guard languages.

6.4 Anomaly Generalizations

• Real-Time Specification Inheritance Anomalies and Real-Time Filters. M. Askit et al. This
paper is an interesting synthesis of a variety of different ideas. The paper presents instances
of the inheritance anomaly in a real-time object oriented setting. The three types of anomaly
presented (mixing real-time specifications with application code, non-polymorphic real-time
specification, and orthogonally restricting specifications) are completely different from the
usual three (partitioning of states, etc). In a certain sense, real-time specifications are simply
concurrency constraints of a very specific kind. The solution to these anomalies is to use
real-time filters; this is examined in the real-time anomalies section of this thesis.

• Reuse Anomaly in Object-Oriented Concurrent Programming. D. Suciu. This paper argues
that the conflict between inheritance and concurrency is the same as the conflict between
delegation and concurrent or association and concurrency. They propose a different taxonomy
of anomaly types and demonstrate how the conventional classification is incomplete. This is
an interesting direction that is completely orthogonal to the approach taken in this thesis.

• On Composing Separated Concerns: Composability and Composition Anomalies. L. Bergmans
et al. This paper presents an extension of the anomaly to a compositional setting. The
paper is short on details – it is only four pages – but the idea is simple: in a compositional
setting, we may wish to obtain a behavior/process C3 that is logically the composition of two
other behaviors/processes C2, C1. However, this can fail if the way we are doing composition
(analog: if the way we are doing inheritance) cannot combine C2 and C1 to yield C3 (analog:
cannot inherit from C1 and/or C2 to obtain C3. The analog of being forced to re-write
methods in a subclass is being forced to write “glue code” to make desired compositions
achievable. The logical place to look for examples of such anomalies would be in the context
of “composition filters,” which can be used as a powerful anomaly avoidance mechanism.

6.5 Anomaly Experiences

• Inheritance Anomaly in CORBA Multithreaded Environments. J. Millan. This paper presents
a relatively straightforward set of inheritance examples and show how the anomaly may be
avoided in CORBA by using CORBAs pre and postcondition operations.

• How to Avoid the Inheritance Anomaly in Ada. W Nebel et al. This paper argues for the
following: “if we are able to modify or extend synchronization constraints in a derived type
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so that they are compatible to the parents constraints without breaking encapsulation then
we have solved the inheritance anomaly.” That is a fairly accurate characterization of how to
avoid the anomaly in any particular case; the paper then presents a set of guidelines for how
to program in Ada such that this is accomplished.

• POOL: Design and Experience. P. America. This paper presents a general discussion of the
design and experiences of the creators of the concurrent OO language POOL. The inheritance
anomaly is not mentioned in this paper; the anomaly is mentioned in other papers about
POOL. This paper is a good basic discussion of POOL suitable for understanding the other
papers.

6.6 Surveys

• The Inheritance Anomaly: Ten Years After. G. Milicia. This is a good foundational survey
paper that is relatively recent. Unfortunately, it does not mention Lobel’s work; that such
a thorough survey could overlook this work is one indication of how specialized and ignored
this important work was. The paper examines AOP and Jeeg as solutions to the anomaly,
and presents examples of the anomaly in many different languages, including Java. The
bibliography is also useful in the sense that it provides many related papers that form a
cluster of research along one direction.

• Concurrent Urban Legends P. Buhr. This paper is extremely unique: it argues that the
anomaly is not a major problem and it cites Lobel’s work. The main argument is that
in practice, inheritance hierarchies tend to be shallow and so the anomaly is not a major
concern. This is likely to be true in practice, but it is my personal belief that the anomaly
is worth studying simply because it casts light on the misunderstood relationship between
inheritance and subtyping in the difficult domain of concurrent programming. It has also
been my personal experience that when demonstrating the anomaly to students (as I did in
Stanford’s CS242 in the Fall of 2005), the students invariable break into two camps: those
that take this position (the anomaly isn’t a problem in practice and you shouldn’t expect
inheritance to do this anyway) and those that take out position (the anomaly is unexpected
and indicates that inheritance and subtyping have become confused). The other urban legends
in this paper are also interesting.

• On the Notion of Inheritance. A. Taivalsaari. This paper is a very in-depth discussion of
inheritance. The paper covers different approaches to inheritance (implementation reuse or
specialization) and different approaches to subtyping (i.e. ensuring specialization) and shows
how the mechanisms relate. The paper also presents a taxonomy of inheritance and subtyping
mechanisms and goes into the philosophical and semantic ideas behind inheritance. A history
of this more broad thinking of inheritance is also provided.

6.7 Aspect-Oriented Programming

• Coding Different Design Paradigms for Distributed Applications with Aspect-Oriented Pro-
gramming. G. Cugola et al. This is a short introductory paper on AOP and how it is useful
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in a concurrent environment. Ironically, their running example of how to use AOP to do
useful things suffers from the inheritance anomaly, which they are quick to point out. This
paper does not demonstrate how the anomaly can be solved using AOP, but shows how the
anomaly occurs when aspects need to be inherited (analogous to when synchronization code
needs to be inherited).

• Towards a Catalog of Aspect-Oriented Refactorings. M. Monteiro et al. This paper presents
a collection of AOP-specific refactorings and code-smells. It is listed here because code that
smells in this way is almost certainly guaranteed to suffer from the anomaly (either in the
sequential code or the aspect code) more so that cleanly written code.

• Constructs for Context-Oriented Programming. P. Constanza. This paper is essentially a
synthesis of AOP, composition filters, and environmental inheritance applied to Lisp; the re-
sulting style of programming is called “context-oriented.” During execution, different “layers”
of definitions are introduced into the running program depending on context; these layers af-
fect the execution of the program to achieve desired results. It seems likely that the judicious
use of these layers would improve maintainability; of course, there is no standard notion of
the inheritance anomaly in Lisp, but many of the same strands of thought about how to avoid
the anomaly in similar, imperative systems can be found in this paper.

• Aspect-Oriented Programming. G. Kiczales et al. This paper is simply a good, broad overview
of AOP, presented in such a way that the way to use AOP to avoid the anomaly is abundantly
clear.

• An Experimental Aspect-Oriented Language: AspectCOOL. M. Mernik et al. This paper
presents a mechanism for separate module compilation using AOP and the experimental
OO language COOL. The main reason that it is interesting is that the advanced features
of COOL already open up possibilities for synchronization constructs that are not behavior
preserving; this, combined with the use of AOP leads to the intriguing possibility of a language
that could use AOP to prevent many instances of the anomaly but also not have behavior
preservation. It is also very likely that the combination of AOP with these constructs can lead
to synchronization mechanisms that are simply much different (and potentially less vulnerable
to the anomaly) than the usual constructs.

6.8 Others

• Exclusion for Composite Objects. Noble et al. This paper presents an “algebra of exclusion”
for specifying concurrency between threads in object-oriented languages. The algebra is used
to specify when threads must not be allowed inside specific components of a composite object.
The algebra is unique and potentially enables more interesting concurrency constructs than
conventional languages.

• Automata-Based Verification of Temporal Properties on Running Programs. K. Havelund
et al. This paper presents a mechanism for checking if programs meet linear temporal logic
constraints. It is included in this list because of its potential applications to efficient evaluation
of history-based guard languages such as JEEG.
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• Object-Oriented Programming with Flavors. D. Moon. This paper presents OOP done inside
Lisp. Lisp “flavors” are classes; a lisp “object” is a member of a flavor (i.e. a person flavor
has components name, etc). Flavor are combined through the use of multiple inheritance for
instance variables and then function composition for inherited methods. This would be an
interesting area to apply the framework to because the concept of inheritance used is mostly
conventional but because of a functional style, the types of things possible with inheritance
is different than in the imperative world.

• Declarative Object-Oriented Programming: Inheritance, Subtyping and Prototyping. S. Alagic
et al. This paper presents an OO language that is written in a declarative style. In addition,
inheritance and subtyping are examined in this declarative style. Although the anomaly is
not treated, it is interesting to examine how languages such as this can be examined using
the formal framework.

• Testing Linear Temporal Logic Formulae on Finite Execution Traces. K. Havelund et al.
This paper presents an algorithm to effeciently test ltl formulae on finite traces. It is included
because languages like JEEG require an algorithm like this to be anywhere near practical.

• Inheritance of Dynamic Behavior. T. Basten et al. This paper presents an interesting use
of inheritance in the context of object lifecycle management. Enough of the core concepts of
inheritance are used to make it seem plausible that an analysis of how this new, somewhat
modified concept of inheritance could be done using the formal framework. The new notion
of inheritance is based on blocking and hiding method calls rather than overriding them. The
paper also gives an example of how this concept was applied to a real-world product.

• Monotonic Conflict Resolution Mechanisms for Inheritance. R. Ducournau et al. This pa-
per presents a discussion of how conflicts may be handled during multiple inheritance. It is
likely that to extend the formal framework to deal with multiple-inheritance, a better char-
acterization of what multiple-inheritance schemes have in common would be required. For
single inheritance, these concepts are understood making it easy to talk about concurrent
OO languages with single inheritance in general, but without such a framework any results
would likely be very language specific. The paper does have a bias toward CLOS and is
presented at a high enough level that significant work would be required to adapt its ideas
into a framework for multiple inheritance at the dozens of languages level.

• Incremental Inheritance Mechanism and its Message Evaluation Method. M. Benattou et
al. This paper gives a formal treatment of incremental inheritance by using the concept of
wrapper classes. The paper is based on a record and lambda calculus and the concepts are
also applied to multiple inheritance. This paper would likely be useful in any characterization
of incremental inheritance in languages that support multiple inheritance.

• Environmental Acquisition: A New Inheritance-Like Abstraction Mechanism. J. Gil et al.
This paper presents the notion of environmental acquisition, where an object’s behavior de-
pends not only on its class, but also on the other object to which it is connected. One example
is that of a handle; presumable, when contained in a car door it would have one behavior,
but when contained in a wooden door it would have another. The paper is presenting a
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fundamentally new way of thinking of programming, and the method presented has strong
type-checking properties and can conceivably be used in place on inheritance. This is another
paper whose language would be interesting to look at with the formal machinery, to see how
the machinery fares.

• Delegation is Inheritance. L. Stein. This paper argues that inheritance and delegation are
equally powerful; the typical view is that delegation is more expressive. A formal model
of the expressiveness of inheritance and delegation is presented, and “natural” translations
between how a concept is expressed in delegation versus inheritance are presented. (I do not
believe the translations are particularly natural, however.) Another paper where it would be
interesting to see how the formal machinery would fare when adapted to the concepts within.

• Incremental Programming with Extensions D. Orleans. This paper examines incremental
programming, programming where components are specified in terms of differences with other
components. Inheritance is one example of incremental programming; AOP is also a type of
incremental programming for crosscutting concerns. This paper presents a language that
unifies the treatment of any incremental concern. The language can best be described as
LISP with AOP. The related work section is also interesting because it discusses many cutting-
edge programming paradigms. Another paper where it would be interesting to see how the
framework fares.
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