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Introduction

Storing a copy of the world wide web is beyond the capability of most organizations. How-

ever, it is often the case that when we are using the web, we are interested only in some

particular subset of the information it contains. If we could capture only the information

we are genuinely interested in, it might be feasible to store a copy of the web. Of course,

different uses of the web call for different kinds of information to be stored, but regardless of

the application, we are, in essence, compressing the web. Our paper presents a framework

wherein different uses of compression can be viewed as variations on a single, generic tech-

nique, and demonstrates how a particular technology – SUBDUE – can be used to efficiently

implement this technique. It is our hope that by capturing various uses of webgraph com-

pression within a single framework, someone who wants to capture and compress specific

information from the web need do no more than state what he wants to capture and push a

button.

Our approach to webgraph compression is based on removing nodes and redistributing

the information contained in the nodes to the nodes that remain in the compressed graph. By

judiciously choosing which nodes to remove and what to do with the removed information,

many different compression schemes can be achieved that are suitable for a diverse array of

applications. For instance,

• A mathematician might want to run PageRank experiments on compressed webgraphs

that have similar topological properties to the original web.

• An archivist might want to use compressed webgraphs that deliver the same top N

search results across some set of queries to understand what the web looked like in the

past.

• A lawyer might want to examine compressed webgraphs that only contain websites

with copyrighted words to settle a copyright dispute.
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In all of these scenarios, it is impractical to store a complete snapshot of the web. But

in all cases, the use of the compressed webgraph is defined by two properties: what nodes

to remove and what to do with the information that is removed. The mathematician would

want to remove nodes with low PageRank and distribute the removed rank so as to avoid

needing to recalculate the PageRank of the new graph; the archivist would want to remove

nodes that never appear in a search and simply discard information contained in those nodes;

the lawyer would want the compressed graph to contain one node per company that contains

all uses of copyrighted words. In all cases, these uses of compression are defined by what to

remove and what to do with what is removed.

In section 2, we investigate how to use a tool called SUBDUE to define sets of nodes to

remove based on the concept of labeling, which we believe is useful for many compression

scenarios. In section 3, we investigate a particular approach to manipulating the information

being removed that allows for scalable compression. We have created a software framework

which allows us to run experiments across a large range of compression scenarios; this work

is described in section 4. Finally, we have examined how well our framework performs on a

single application: the archival scenario described above. This work is described in section

5.

Related Work

Our work can be viewed as an application of SUBDUE to webgraph compression, an area

where related tools have had some success. SUBDUE is based on node labeling schemes

and pattern matching based on graph grammars; while graph compression of this kind is

an established research area, it is only within the last five years that various groups have

attempted to apply these techniques to webgraphs.

SUBDUE itself has been used to examine various structural properties of the web [9] and

these properties have been used to implement higher-order web queries [4]. Graph grammars

similar to those SUBDUE can produce have been used to model webgraph evolution [10].

Perhaps most importantly, compression of network graphs using labeling information in a

way similar to SUBDUE has recently been demonstrated [6].

1 Webgraphs, Matching, and Compression

We define a webgraph to be a tuple (N, E) where N is a set of nodes and E is a set of edges,

where a node is an ordered triple with three components: the node’s PageRank, a real number

0 < r ≤ 1, the node’s identifier, a set of strings, and the node’s wordlist, also a set of strings.

For example, if www.tiny.com has PageRank .1 and contains only two words, “cat” and

“mouse”, then this node could be represented as ( .1, { www.tiny.com }, { cat, mouse } ).

An edge is simply a directed association between two nodes. Our particular definition of

webgraph is designed to be an intermediate form between a fully general account of graphs
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and graphs of the kind that the SUBDUE tool uses, with an eye toward being useful in our

software framework and for our experiments. For different applications, identifiers, wordlists,

and even PageRank itself could be replaced by other concepts, but the overall framework for

compression would remain essentially the same.

Our definition of webgraphs suggests a number of degrees of freedom which may vary

independently by desired application of compression:

• What nodes should be removed? Call this set r. (given by the matching function)

• What happens to the edges attached the nodes in r? (given by the edge function)

• What happens to the PageRank of the nodes in r? (given by the rank function)

• What happens to the wordlists of the nodes in r? (given by the list function)

• What happens to the identifiers of the nodes in r? (given by the identifier function)

By choosing appropriate functions, we may defined suitable compression functions for a

variety of applications. For instance, if we would like to compress the web so that it contains

only “important” websites, we can choose these functions as follows:

• matching function: remove all nodes with PageRank in the lower half of the PageRank

distribution

• edge function: simply remove all connections from the nodes that are removed

• rank function: distribute the removed PageRank uniformly across the graph (alterna-

tively, use a strategy given in [2])

• list function: the wordlists of the removed nodes should be discarded

• identifier function: the identifiers of the removed nodes should be discarded

The result of compression will be a webgraph that contains only important websites and

whose PageRank distribution matches approximately what would be obtained by running

PageRank on the newly compressed graph.

2 SUBDUE as a Matching Function

To compress a webgraph, we need to know what set of nodes should be removed; determining

this set is the focus of this section. What to do once we’ve found that set is discussed in the

next section.

Because the set of nodes to remove is completely application specific, we would like to

have a general purpose mechanism for searching for nodes to remove that satisfy a certain
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property. That way, we can set some parameters in a general function and ask the function

to search the webgraph. Without this generic ability, we are forced to write specific matchers

for every application. In general, it is non trivial to write a matching function to find sets

satisfying arbitrary properties.

SUBDUE is a program that searches for isomorphic (or near isomorphic) subgraphs in a

given graph by utilizing a user defined label for each node [3]. Associated with each node

given to SUBDUE is a label, which is simply an element in an arbitrary domain that admits

an equality comparison. SUBDUE efficiently searches for recurring patterns among nodes by

examining the relationship of node and label configurations to each other and attempts to

identify patterns of nodes that would minimize the amount of information needed to describe

the graph that would result if the patterns are all removed. (The particular process by

which SUBDUE operates is known as minimum description length matching.) By choosing

an appropriate labeling for our graph, we may simply call on SUBDUE to find suitable sets

of nodes to remove. For instance,

• a mathematician interested in preserving the pagerank distribution among highly

ranked nodes could give every node with a low pagerank label α and every node with a

high pagerank label β. SUBDUE would then search for patterns among and between

these labels in an attempt to extract the most common recurring subgraph that it can

identify; these subgraphs can then potentially be compressed. Alternatively, one could

easily use SUBDUE to identify fully connected subgraphs, a potentially interesting

application from a topological perspective.

• a data mining researcher could label each every node with the word that causes that

page to rank most highly in a query. This would have the effect of compressing large

clusters of websites related to a certain theme into one node representing that theme.

In fact, this kind of knowledge discovery has been one of the most useful applications

of SUBDUE [5].

• a lawyer could label each node with its domain name, causing the compressed graph

to have nodes representing corporate entities.

An illustration of the general technique appears is show below; note that in this case,

SUBDUE has been configured to identify “almost” isomorphic subgraphs, and to use labels

on edges.
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It is important to note that SUBDUE does more than scan the graph and return any set

of nodes that matches the specified criteria. Rather, it attempts to return sets of nodes whose

structure commonly occurs in the graph. It is this ability to find substructure that allows

for semantically interesting compression, as evidenced most clearly in the second scenario

above.

We exploit the connected nature of these identified substructures to compress webgraphs

in a local, scalable way, as described in the next section.

3 Local Compression Functions

Our definitions of rank, edge, identifier and list functions are purposefully vague. In partic-

ular, very esoteric and computationally complex functions fit the definition. By requiring

the matching function and compression functions to work together, in our case by using

SUBDUE as a matching function, we can come up with a very natural set of functions that

are scalable and useful for many of the applications we are considering. Below, let G be the

domain of webgraphs.

Definition. A substructure is a tuple (c, R) where c is a node and R is a set of nodes directly

connected (either by in edge or out edge) to c. c is called the center of the substructure and

the nodes in R are called the spokes. A substructure can be considered to be a graph; we

will typically treat substructures as graphs without explicitly noting so. Denote the set of

all substructures in a graph g as S(g).

Our definition of substructure is essentially a restriction of the definition of a connected

graph, the restriction being that a substructure must have one center node and all other

nodes must be immediate neighbors of the center. We require this restriction simply because

this definition is easier to use in our software framework, as described in the next section.

The use of substructures may be replaced with connected subgraph in the analysis that

follows with some slight modifications.
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In essence, SUBDUE identifies connected subgraphs, and we are trying to use this fact

to ensure that our compression operations are local to these identified subgraphs and their

immediate surroundings, which is required for compression to scale well. This notion of

locality is captured by local compression functions :

Definition. A local compression function is a function f(g) : (G, S(g)) → G that returns a

result graph with the following properties:

1. the PageRanks for all nodes that are not connected to the substructure are unchanged

2. the wordlists for all the nodes that are not the center are unchanged

3. the identifiers for all the nodes that are not the center are unchanged

4. the sets of in edges and out edges for all nodes that are not connected to the substruc-

ture are unchanged

5. the spoke nodes of the substructure do not appear in the resulting graph and wherever

there was an edge to or from a spoke node, there is now an edge to or from the center

node.

Intuitively, a compressed graph C compressed by a local compression function can be

expressed as a fold over the original graph g; that is, C = f(f(f(g, sub1), sub2), sub3) . . . for

some set of substructures subn. Importantly, this property means that we can compress a

graph by iteration by repeatedly searching for substructures that match our requirements,

and that at each iteration, we only need to modify a small part of the graph.

A local compression function is thus defined by three properties: the new wordlist for the

center node, the new identifier for the center node, and a strategy for determining PageRank.

By using a local compression function in concert with a sequential matching function like

SUBDUE that determines substructures, we have a scalable compression algorithm. It is

exactly this kind of compression that we have implemented in our framework.

4 Software Framework

In order to evaluate our ideas and provide a tool allowing the types of compression described

above, we’ve implemented a Java application with the following features:

1. A pluggable interface for each degree of freedom described in section 1. That is, when

a user loads and compresses a graph, he can independently choose the matching, edge,

rank, list and identifier functions that should be used.

2. The ability to load and save graphs in SUBDUE format, enabling quick access to a

large amount of pre-existing data sets, including webgraphs, molecular bond graphs,

and other highly-patterned graph data.
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3. Automated interaction with the SUBDUE application for the purpose of computing

SUBDUE-based matching functions. This allows for unlabeled, and more interestingly,

labeled pattern-matching using SUBDUE.

4. A simple Naive matcher which randomly identifies potential substructures without any

regard to relevance. This is intended to be used as an experimental baseline.

5. The ability to generate random graphs and graph element content according to several

useful parameters.

6. The ability to calculate PageRank on arbitrary directed graphs.

7. A variety of strategies for redistributing PageRank from deleted nodes to the rest of

the graph.

8. Multiple evaluation functions, including top-N keyword queries for evaluating query

performance, graph size for determining how compressed a graph is, and PageRank

distance for estimating how far a graph is from its settled PageRank distribution.

9. A simple graph visualization tool for examining the effect of different operations on

reasonably sized graphs.

The application uses a Java-based graph packaged called JUNG [1], which enables it to

efficiently carry out operations on large graphs. In general, the input graphs are assumed to

be webgraphs, so a sparse graph representation is used to minimize memory consumption.

Figure 1 shows the main application screen and Figure 2 demonstrates graph visualization

with labels and PageRank calculations.

5 Experiments

We have conducted a series of experiments evaluating the suitability of SUBDUE-based

compression to the archivist’s scenario described above. The archivist wants to preserve

a copy of the web which maintains the quality of top-N search results. The goal of our

experiment was therefore to maintain the top-N results on a set of search terms under the

chosen compression operations.

Our experiments made use of real-world webgraph data captured by a web crawl. These

data sets describe the topological arrangement of several hundred closely related web pages.

In order to hold topology constant under changes in content, we assigned content to each

page by associating with it a list of about 50 randomly-chosen keywords. The keywords were

drawn from a candidate pool of 1000 words. An affinity parameter was used to control the

degree to which nearby pages are related to one-another. With affinity set to 100%, all of

a page’s keywords are guaranteed to appear in at least one of its neighbors as well. With
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affinity set to 0%, the random assignment makes no guarantees about word overlap between

neighboring pages.

In this setting we would like to create clusters of pages with the same general topic. We

therefore labeled each node with the word for which it has the highest query ranking, on the

theory that this is likely to constitute a good approximation of the page’s topic. The labeled

SUBDUE matcher was then used to search for and combine clusters of related pages.

The most intuitive way to combine page information is to compute the union of the word

lists of the removed nodes and add these keywords to the center node. This is the approach

we used. The same union operation was used to combine the list of site names so that

they could all be returned as search results. Ideally, the compressed graphs would consist

of clusters of related pages. There is then a trade off between the amount of compression

desired and search precision. Compression is achieved because the total number of nodes,

links, and word sets is reduced.

If this approach had worked, we would have compared the search performance at a given

level of graph compression with that of the Naive algorithm. Unfortunately, even under

the most favorable conditions we were able to create with these parameters, it seems that

SUBDUE is rarely able to discover useful substructures in this scenario. The structures it

returns are generally only one or two nodes in size, indicating a lack of organized structure

in the labeled graph. The only conclusion we can draw is that either our experimental setup

did not adequately capture relevant properties that may be present in real webgraphs or

that this approach is not generally useful for web graph compression of the type we were

attempting.

6 Future Directions

Our framework may be extended in many ways; for instance, by adding non-local efficient

pagerank distribution functions like those in [2], or by generalizing our local compression

functions to use arbitrary connected graphs rather than substructures. One particularly

speculative idea we have been thinking about is whether or not it is possible to use SUBDUE

to guarantee that a compressed graph will match the top N search results on the original

webgraph for some given set of queries. This idea has not been fully explored but our

thoughts are presented here to give a flavor for the potentially powerful applications that

labeling enables and the interesting new questions it raises.

Definition. A stratification is a set of real numbers 0 < r0 < . . . rn < 1. Each rn is called a

rank.

Let S be a stratification and g a webgraph. Our idea is to label each node in g with

where that node’s PageRank falls in the stratification S. Iteration one of compression would

look for common substructures among center nodes with rank r1 and spoke nodes with rank

r0. Iteration two would merge labels for r0 and r1 and then look for substructures among

center nodes with rank r2, and so forth.
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We would like to choose the stratification S such that during compression, when PageR-

ank is redistributed, no node ever jumps from rank rn to rank rn+1. If this restriction holds,

the resulting graphs should have the property that when a query is executed, all “pages”

with original ranks rn will always appear below all “pages” with original ranks rn+1, giving

a graph in which “pages” are ordered correctly between ranks, if not ordered correctly inside

of a rank. If we increase the amount of stratification so that every node has its own label,

then we arrive at an algorithm that completely respects PageRank and does not compress

at all. (We write “pages” because each node during compression actually represents a set of

pages.)

Unfortunately, we are unsure of how to choose a stratification that has this property;

ideally, one could find the stratification simply by looking at the distribution of the original

graph, or, less ideally, by looking at the topology of the graph. Regardless, it seems like a

stratification with this property in some sense represents the variability of PageRank within

the graph, which we think is an interesting topic to think about. Of course, because labels

are taking PageRank values, this algorithm would undoubtedly require modification before

it could be used in, say, the archiving scenario described above, but the algorithm raises

interesting questions in its own right.

7 Conclusion

Webgraph compression is a relatively new topic; even the notion of what compression means

in this setting is still unsettled. We have chosen to apply the SUBDUE tool to an area that

it what not specifically designed for, but an area where it shows some promise. Although

our general framework allows for a wide variety of compression scenarios to be expressed, it

is less clear that the use of labeling with SUBDUE is necessarily the most natural way to

express the properties required of compressed webgraphs. This is most clearly seen in our

experiments with the archival scenario, where what seemed like a plausible use of SUBDUE

did not lead to good results, at least in our admittedly small experimental setup. Overall,

given the success of SUBDUE in related areas and the growing need to compress – or mine

– information from the web, it seems likely that SUBDUE can be applied in some manner

to this area. Only time will tell.
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Figure 1: The main application screen

Figure 2: A sample graph visualization with labels and PageRanks
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